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Natural glues offer great potential as bio-inspired solutions to problems associated 
with the performance of synthetic adhesives. Spider viscous glues are elastic 
pressure sensitive adhesives (PSAs) that physically adhere to surfaces on contact 
across a range of environmental conditions. Extracting useful components 
from these secretions remains a challenge that can be met by the comparative 
analyses of functional analogues. Here we  used 1H NMR spectroscopy and 
mass spectrometry to ascertain the organic salt compositions of the PSAs 
of four different species of Australian spiders belonging to two lineages that 
independently acquired aqueous gluey secretions: the St Andrew’s cross (Argiope 
keyserlingi), the redback (Latrodectus hasselti), the false widow (Steatoda grossa), 
and the daddy long-legs spider (Pholcus phalangiodes). The PSAs from each of 
these spiders contained similar organic salts, albeit in variable concentrations. 
The adhesives of the false widow and daddy long-legs spider had mixtures of only 
a few components, of which betaine predominated, while the PSAs of the other 
spiders predominantly contained small organic acids such as GABA/GABA-amide, 
isethionate, and choline salts. Our results suggest that the PSA composition of 
spiders is likely to be influenced more by environmental factors than evolutionary 
history and are guided by common principles. Our findings could be valuable for 
facilitating the design of more sustainable synthetic glues.
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Introduction

Loss of adhesion as temperature or humidity fluctuates is one of many drawbacks of modern 
synthetic adhesives (Kinloch, 1987). The adhesives used by animals, on the other hand retain 
their adhesive function across most environmental conditions and are often tailored to perform 
best at conditions that are challenging for artificial adhesives (Smith and Callow, 2006; 
Hennebert et al., 2015; Jain et al., 2015; Singla et al., 2018). For this reason, there is immense 
interest among researchers and industries in investigating the chemical and physical properties 
of different animal adhesives (Gorb, 2008; von Byern and Grunwald, 2010; Santos et al., 2013). 
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Earmarked applications for bioinspired glues include in situ tissue 
adhesives, toxin free food packaging adhesives, wet and/or underwater 
adhesives, and reusable adhesives for walking and climbing robots 
(Liu and Jiang, 2011; Hanks and Sweigers, 2012). Despite such interest 
our understanding of the chemical functionality of most natural glues 
and adhesives is rudimentary at best.

As animal adhesives are usually a diverse and variable mix of 
components (Wolff et al., 2021), identifying the core functional units 
leading to the impressive performance represents a major milestone 
toward a successful biomimetic implementation. One way to achieve 
this is through the comparative study of analogous systems (Wolff 
et al., 2017). Most research so far has focused on specific aspects of a 
few well-known systems, such as gecko toe pads and mussel byssus 
threads (Gorb, 2008; Liu and Jiang, 2011; Bré et al., 2013; Wolff et al., 
2017). It is thus evident that a more thorough examination of the 
chemistry and functionality of a wider range of different animal glues 
and adhesives is needed. We  accordingly took a bioprospecting 
approach herein to identify whether common chemistries could have 
repeatedly evolved among some phylogenetically distinct spider prey 
capture adhesives.

Natural and synthetic adhesive substances that require some 
degree of pressure to activate their adhesion without creating durable 
chemical bonds with the substrate are called pressure sensitive 
adhesives (PSAs) (Vendamme et al., 2014). Spiders produce a variety 
of sticky secretions (Sahni et al., 2011; Wolff and Gorb, 2016). These 
includes: (1) glue-like substances that dry within seconds and form 
strong and durable bonds between the silks, environmental substrates 
and anchor lines (Wolff et al., 2015; Wolff and Gorb, 2016; Wirth et al., 
2019), (2) PSAs such as the so-called viscid silk of orb webs and 
cobwebs, that give spider webs their stickiness and permit silk lines to 
reversibly adhere to prey (Sahni et al., 2010; Townley and Tillinghast, 
2013; Jain et al., 2016; Kelly et al., 2019), and (3) dry adhesives based 
on nanofibers which are utilized for prey capture by some spiders 
instead of viscid silk (Hawthorn and Opell, 2003; Bott et al., 2017; 
Piorkowski et al., 2020).

Viscid or viscid-like silk is found among distantly related lineages 
of spiders, such as orb web spiders (Araneoidea: Araneidae), cobweb 
spiders (Araneoidea: Theridiidae) and the daddy long-legs spider 
(Synspermiata: Pholcidae) (Briceño, 1985; Japyassú and Macagnan, 
2004; Wolff and Gorb, 2016). These gluey secretions appear as droplets 
on the sticky capture spirals of orb webs (Figure 1A), or at the base of 
the capture gumfoot threads of cobwebs (Figure 1B; Blamires, 2022). 

The aqueous glues are secreted from the so-called aggregate glands 
possessed by most araneoid spiders. Pholcids on the other hand do 
not possess aggregate glands, rather a set of modified pyriform glands 
produce gluey secretions that superficially resembles aggregate glue 
(Japyassú and Macagnan, 2004; Vasanthavada et al., 2012; Wolff and 
Gorb, 2016). In all instances the glues are applied onto silk threads 
whereupon they form droplets that look somewhat like beads-along-
a-string (Blamires, 2022). Although they lack the aggregate gland, the 
gluey secretion of the daddy long-legs spider seem to function 
similarly to aggregate glues despite being evolutionarily distant 
(Japyassú and Macagnan, 2004). Hence, it is reasonable to infer that 
PSAs could have repeatedly evolved among multiple lineages of spider 
(Vasanthavada et al., 2012).

The adhesive functionality of viscid gluey silks may be associated 
with specific ecological processes. In contrast to artificial PSAs, the 
viscid silk of araneoids remains tacky under high humidity because it 
contains hygroscopic salts which remove water from the substrate 
surface (Singla et  al., 2018). The stickiness of these viscid silks is 
conferred by the presence of phosphorylated glycoproteins, while the 
salts are thought to keep these glycoproteins hydrated (Vollrath et al., 
1990; Sahni et al., 2010, 2014a,b; Opell et al., 2014; Ayoub et al., 2021). 
Consequently, the material is kept very soft, permitting the adhesive 
functionality (Torres et al., 2014). In orb web and cobweb spiders the 
salts comprise a combination of low molecular weight organic (e.g., 
GABamide, choline, isethionic acid) and inorganic (e.g., HPO4, and 
KNO3) compounds (Vollrath et  al., 1990; Opell et  al., 2018). 
Nevertheless, very little is known about the salts present in the glues 
of other spiders.

It remains unclear if the modulation of adhesion by the organic 
salts represents a common principal in spider PSAs, as previous 
research has been limited to just a small number of orb web and 
cobweb spiders. Ascertaining any common chemical properties in 
spider glues across a broad lineage of spiders would thus be useful for 
designing biomimetic glues to push the limits of adhesives applications 
(Patek, 2014; Wolff et  al., 2017). To this end, we  ascertained the 
organic salt composition of the viscid gluey silks of four 
phylogenetically dissimilar spiders found along the East Coast of 
Australia: (i) an orb web building spider, Argiope keyserlingi Karsch 
1878, and two cobweb spiders, (ii) Latrodectus hasselti Thorell 1870 
and (iii) Steatoda grossa Koch 1838 (all Superfamily Araneoidae), and 
(iv) the daddy long-legs spider, Pholcus phalangioides Fuesslin 1775 
(Pholcidae). These species represent two distinct evolutionary origins 
of PSAs in spiders, thus comparisons among them allow us to seek a 
possible common chemical principal underlying the functionality of 
different spider PSAs.

Materials and methods

Sample collections

Ten adult female orb web building spiders, Argiope keyserlingi, 
were collected from urban locations in Eastern Sydney, Australia. The 
spiders were weighed on an electronic balance (Ohaus Corp., Pine 
Brook, NY, USA) upon capture to ensure the individuals used in our 
experiments were of approximately equal mass before taking them to 
the University of New South Wales where they housed in 30 (length) 
× 30 (height) × 55 (width) cm perspex enclosures and fed house flies 

A B

FIGURE 1

Location of the different gluey secretions in spider webs. Panel 
(A) shows the sticky capture spirals in spider orb webs, and (B) the 
gumfoot capture threads of cobwebs.
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to promote web building (Blamires et al., 2017). We then monitored 
the enclosures for webs. Once they had built their webs we removed 
each spider using forceps and wound heir webs onto 200 μl plastic 
pipette tips to be subjected to analysis using 1H Nuclear Magnetic 
Resonance (NMR) and Mass Spectroscopy (MS).

Approximately 20 Latrodectus hasselti and Steatoda grossa were 
collected from the grounds of the University of New South Wales, 
Sydney, Australia. These were placed within either 24.5 × 18 × 13 cm 
wooden frames within 27.5 × 18 × 16 cm Perspex enclosures 
(L. hasselti) or 19 × 16.5 × 13 cm wooden frames within 20.5 × 14.5 × 
13 cm Perspex enclosures (S. grossa) at the University of New South 
Wales. The spiders were left unfed, to avoid contamination of the glues 
with insect secretions, in the enclosures for 2 weeks. The enclosures 
were thereupon checked for capture threads (so-called gumfooted 
threads), which were individually wound onto sterile 200 μl plastic 
pipette tips by carefully making contact with the glue and causing the 
line to break just above the ground. The upper end of the line was then 
cut with a hot soldering iron. We prodded the spider with forceps so 
that it moved into a purposely built retreat to ensured it was not 
interacting with any of the lines being collected. We continued to 
collect threads until each pipette tip (n = 3 per species) contained 
approximately 200 threads from between five and ten individual webs.

Daddy long-legs spiders (Pholcus phalangioides) were collected in 
and around buildings at Macquarie University, Sydney, Australia. 
Spiders were housed at Macquarie University within cardboard frames 
(20 × 10 × 15 cm) with the front and hind wall being open and covered 
with plastic wrap to prevent the spiders from escaping and to allow 
visual inspection of the webs. Spiders were left unfed in the boxes for 
2 weeks, upon which the plastic wrapping was removed, and the spider 
carefully taken out of the container without touching the threads. The 
sticky threads were then collected on 200 μl plastic pipette tips as 
described above for cobweb spiders. In total ~ 1,500 threads were 
collected from 40 daddy long-legs spiders, which were stored in sterile 
plastic jars before being transported to the University of New South 
Wales for NMR and MS analyses. The glue covered pipette tips were 
fixed with plasticine to the jar lid to prevent contact to the jar walls 
during storage and transportation of the specimens.

Sample preparations

All of the spider glue samples were washed off the sampling tips 
with a 150 mM potassium phosphate buffer, pH 6.95, containing an 
internal reference (deuterated trimethylsilyl propanoate, TMSP), a pH 
indicator (difluorotrimethylsilanylphosphonic acid, DFTMP) and 
99.96% D2O (Cambridge Isotope Laboratories). Single samples were 
washed with multiple aliquots of buffer adding up to a total volume of 
180 μl. Combined samples were prepared from a single aliquot and 
added sequentially to 3 mm NMR tubes (Norell).

Nuclear magnetic resonance spectroscopy

Proton (1H) NMR spectroscopy was performed using a Bruker 
Avance III HD 600 MHz spectrometer (600.13 MHz, 1H; 150.9 MHz 
13C) fitted with a 5 mm cryoprobe. Samples were stored in a 
refrigerated Sample Jet autosampler on the magnet. NMR spectra were 
acquired using the program TOPSPIN 3.6.0 (Bruker, Melbourne, 
Australia). 1H solvent suppression was performed using 1D NOESY 

pre-saturation (noesy1dpr) at the HOD solvent residual chemical shift. 
1H-13C HSQC spectra were acquired using an optimized pulse 
program in the Bruker library (hsqcedetgpsisp2.4) (Palmer et al., 1991; 
Kay et al., 1992; Willker et al., 1993; Schleucher et al., 1994; Zwahlen 
et al., 1997). A sweep width (time domain) of 12 ppm (2 k data points) 
in the 1H and 240 ppm (512 data points) in the 13C dimension was 
used over 16 scans. 1H-13C HMBC spectra were acquired using the 
Bruker pulse program hmbcgplpndqf (Cicero et al., 2001). A sweep 
width (time domain) of 12 ppm (2 k) in the 1H and 195 ppm (512 data 
points) in the 13C dimension was used with a collection of 16 scans. 
Fourier transformation, phasing, solvent filtering, chemical shift 
referencing, baseline correction and reference line shape convolution 
were performed using program Bayesil (Ravanbakhsh et al., 2015). 
We then compared the relative peak positions of our deconvoluted 
spectra to a published reference spectra (Vollrath et  al., 1990) to 
identify the individual organic and inorganic hygroscopic salts, and 
any other small and large molecular weight compounds, within each 
species’ glues. The relative concentrations of each of the compounds 
identified was calculated upon baseline correction and integration of 
the peaks using Bayesil’s metabolomics calculator.

Mass spectrometry

We used tandem mass spectrometry (MS/MS) to verify the 
presence of compounds identified by 1H NMR as follows.

Individual pipette tips containing either gumfoot threads or 
threads from orb weaver spiders were washed with 300 uL methanol 
(HPC grade, Merk, USA) into a 1.5 ml Eppendorf tube. A 7 uL aliquot 
of each sample was taken for analysis on an Orbitrap LTQ XL (Thermo 
Fisher Scientific, San Jose Ca, USA) ion trap mass spectrometer using 
a nanospray (nano-electrospray) ionization source to generate ions 
from the analytes in solution.

The instrument was calibrated with a standard calibration solution 
(as outlined in the instrument manual) on each of the analyses. All 
analyses were carried out in positive ion mode using the orbitrap 
FTMS analyser at a resolution of 100,000. Sample aliquots were 
injected into a glass needle and inserted onto the nanospray source. 
Ions generated were measured over the molecular mass range 150 to 
2000. Data was acquired in full scan mode over 60 s. The data 
generated were analyzed using the Qual Browser feature in Xcaliber 
2.1 (Thermo Fisher Scientific, San Jose, CA, USA).

Results

The deconvoluted 1H NMR spectra for the four species of spiders 
are shown in Figures 2A–D. The concentrations of the substances that 
we identified in the gluey secretions for each species’ are summarised 
in Table 1, with comparisons to the concentrations found elsewhere 
for similar species (Vollrath et al., 1990; Jain et al., 2018; Opell et al., 
2018). The mass spectrometry spectra for the four species’ gluey 
secretions are shown in Figures 3A–D.

Argiope keyserlingi

The 1H NMR spectra of the glue of the orb web spider A. keyserlingi 
had a prominent triplet at ~δH 2.41 ppm, coupled with multiplets at 
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3.04 and 1.96 ppm. According to a previously published spectra 
(Vollrath et al., 1990), this feature is indicative of the presence of the 
compounds γ-Aminobutyric acid (GABA) and/or GABA-amide. Our 
compositional calculations of the integrated peak areas found GABA/
GABA-amide to be far and away the most predominant compound 
(~76%) in the glue of Argiope keyserlingi. Examination of the MS/MS 
spectra revealed a prominent single peak at 104.07 m/z 
(Supplementary Figure S1), which we attributed to a GABA/GABA-
amide adduct (since GABA/GABA-amide has a corresponding 
molecular mass of ~103.12 g/mol).

Other compounds identified within the glues of A. keyserlingi in 
significant quantities were choline (11%), isethionic acid (~11%) and 
N-acetyltaurine (~2%). Choline was identified by the 1H NMR 
spectrum from the co-existing multiplets at δH 4.1 and 3.65 ppm and 
the singlet at δH 3.2 ppm. Isethionic acid was identified by the paired 
triplets at δH 3.95 ppm and 3.25 ppm, while N-acetyltaurine identified 
by triplets at ~δH 3.56–3.10 ppm and a singlet for the acetyl group at 
δH 2.0 ppm. We  confirmed the presence of these compounds by 
reference to the MS/MS spectra by single peaks at 104.10 m/z 
(attributed to choline), 125.55 (Isethionic acid), and 168.03 
(N-acetyltaurine) (Supplementary Figures S2, S3). The concentrations 
of these compounds were reasonably similar (i.e., within 10%) to those 
derived for other Argiope sp. glues using 1H NMR (Vollrath et al., 
1990; Jain et al., 2018; Table 1). We were thus convinced that our 1H 
NMR spectra were of comparable resolution to those derived 
elsewhere for other orb web spider glues (e.g., Vollrath et al., 1990; 
Sahni et al., 2014b; Jain et al., 2016, 2018).

Latrodectus hasselti

The compounds found in the glues from Latrodectus hasselti were 
remarkably similar to those found for the congeneric cobweb spider 
Latrodectus hesperus, as reported by Jain et  al. (2018); with a 
combination of peaks indicating the presence of choline (as described 

above for A. keyserlingi), along with paired triplets attributable to 
Isethionic acid, and the group of three multiplets attributable to 
GABA/GABA-amide (with an estimated composition of 52%). These 
compounds were also verified by peaks in our MS spectra (Figure 2B, 
Supplementary Figures S4–S6). Our 1H NMR spectra for the glues of 
L. hasselti’s differed from those for L. hesperus (Jain et al., 2016, 2018), 
however, by having an additional quintet at ~δH 2.15 ppm. We ascribed 
these peaks, with reference to the Human Metabalome Database 
(Wishart et al., 2009) and our MS spectra, as representing the presence 
of GABA. Accordingly, we  concluded that the glue produced by 
L. hasselti must have contained both GABA-amide and GABA in 
quantities shown in Table 1.

An additional feature we detected in the PSAs of L. hasselti that 
was not detected in those of L. hesperus’ (Jain et al., 2018) was a small 
triplet peak at around ~ δH 3.4 ppm. Without a reference spectrum of 
the pure component, nevertheless, the identity of the compound 
remains uncertain. However, we  know it is a three-carbon chain 
coupled to a triplet at δH 2.346 and a quintet at δH 2.138. One 
possibility supported by a peak in the MS spectra at 104.07 m/z (see 
Supplementary Figure S6) is that it may indicate phosphorylated 
GABA (Wishart et  al., 2009). Upon inspection of the 1H NMR 
spectrum beyond the 5 ppm chemical shift window 
(Supplementary Figure S7) we noticed several additional peaks that 
may be  indicative of aromatic amino acids, which may form 
components of the spider coating proteins (SCPs), as observed by Hu 
et al. (2007). Examination of the spectra to include the 0–1.5 ppm 
chemical shift window (see inset of Figure 2) revealed further peaks 
that may be attributable to yet-to-be-identified small chain fatty acids.

Steatoda grossa

Although Steatoda grossa and L. hassleti both belong to the Family 
Theridiidae, the chemical profile of the glues of the two species 
differed markedly in several respects (Figures 2B,C). For instance, the 

A

B

C

D

FIGURE 2

600  MHz 1H NMR spectra of glues from (from top to bottom): Argiope keyserlingi (A), Latrodectus hasselti (B), Steatoda grossa (C), and Pholcus 
phalangioides (D) across the spectral range 0 to 5  ppm, with the 0.5 to 2.0  ppm spectral range enhanced as an inset. See the ‘Materials and Methods’ 
section for details about NMR preparation and data acquisition. Annotations on the spectra are: C, choline; B, betaine; I, isethionic acid; G, GABA/
GABAmide; N, N-acetyltaurine; Gl, glycine.
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TABLE 1 Comparisons of the compositions of organic salts identified within the glues for a range of spider species (see the ‘Reference’ column for the authority in each instance).

Spider

Organic salts Amino acids

Reference
Choline Betaine Isethionate N-Acetyltaurine GABA GAB-

Amide
N-acetylputrescine Glycine Alanine

Araneus 

cavaticus

12% 2% 23% 6% 45% Vollrath et al. 

(1990)

Araneus 

diadematus

✓ ✓ ✓ ✓ ✓ Vollrath et al. 

(1990)

Araneus 

marmoreus

6% 21% 6% 49% 5% 11% 2% Opell et al. (2018)

Argiope aurantia 19 B – 20 A% 3 A – 12 B% 6 A – 11 B% 10 B – 17 A% 38 B – 48A % 4% B AVollrath et al. 

(1990), B Opell 

et al. (2018)

Argiope 

keyserlingi

11% 11% 2% ✓ 76% This study

Argiope 

trifasciata

16A – 21B % 3 A − 12% B 21 A–27B% 5% B 6% A 34% B 5% B AVollrath et al. 

(1990), B Jain et al. 

(2018)

Larinioides 

cornutus

12% 1% 14% 56% Jain et al. (2018)

Latrodectus 

hasselti

10% 30% 5% 52% ✓ ✓ This study

Latrodectus 

hesperus

14% 22% 64% Jain et al. (2018)

Neoscona 

crucifera

9% 4% 15% 14% 12% 18% Opell et al. (2018)

Pholcus 

phalangiodes

74% This study

Steotoda grossa 63% 10% 27% This study

Tetragnatha 

laboriosa

7% 39% 46% 1% Jain et al. (2018)

Verrucosa 

arenata

8% 6% 25% 10% 15% Opell et al. (2018)

Ticks are provided where compositional data were unavailable in the cited study. Letters are used to differentiate between multiple authorities within a row.
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singlet at ~δH 3.27 ppm in the spectra derived for the glues of S. grossa 
was notably absent in that for L. hasselti. According to previous 
research, this feature, along with the singlet at ~δH 3.90 ppm can 
be assigned to betaine (Jain et al., 2018). This assignment is further 
supported by a peak in our MS/MS spectra at 118.08 m/z, which is 
consistent with the presence of betaine (Supplementary Figures S8, S9). 
The relative concentration of betaine in the PSA of S. grossa was 
estimated to be around 63%.

Betaine seems to be absent in the glue of L. hasselti and present in 
only trace amounts within A. keyserlingi’s glue. It is nonetheless the 
primary constituent of P. phalangioides’ gluey secretions (see below 
for details). Its composition detected within the PSAs of other spiders 
is highly variable, ranging from absent to >40%. The other major 
compound found in the glues of S. grossa was GABA-amide (~27%), 
which we  determined from the prominent triplet of peaks at δH 
2.30 ppm and the MS/MS spectra peak at 104.07 m/z 

(Supplementary Figures S8, S10). N-acetyltaurine (~10%) was also 
identified by the triplets at δH 3.56 and δH 3.01 ppm and a singlet at δH 
2.00 ppm for the acetyl group. The latter compound was absent 
altogether from the glue of L. hasselti.

Pholcus phalangioides

Pholcid spiders belong to the spider group called the Synspermiata, 
which branched out early in the evolution of spiders, thus they are 
only distantly related to orb web and cobweb building spiders 
(Wheeler et al., 2017). They also lack aggregate glands so have evolved 
to use a PSA independent to the three aforementioned areneoids. This 
explains why the composition of the PSAs of P. phalangioides differed 
rather substantially from those of the other spider species. The 
dominating presence of betaine was deduced from two singlets in the 

A B

C D

FIGURE 3

Spectral outputs for the tandem mass spectrometry (MS/MS) of the glues of Argiope keyserlingi (A), Latrodectus hasselti (B), Steatoda grossa (C), and 
Pholcus phalangiodes (D).
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NMR spectra at ~δH 3.90 ppm and δH 3.25 ppm, and the peak at 
118.086 m/z within the MS/MS spectra 
(Supplementary Figures S11, S12). Our subsequent compositional 
analyses found these glues to comprise of >70% betaine, thus 
resembling S. grossa glues in this regard. Nevertheless, none of the 
other compounds found in the glue produced by S. grossa (i.e., GABA-
amide and N-acetyltaurine) were found within those of 
P. phalangioides’. Some extremely small peaks, at ~ δH 2.0–2.6 ppm 
amd ~ δH 3.40 ppm, indicate there were trace amounts of other, 
unidentified, aliphatic compounds in the glue of P. phalangioides.

Other compounds that we, and others (Jain et al., 2016, 2018; 
Opell et al., 2018), have detected in spider PSAs include choline and 
isethionic acid, but these compounds were notably absent from those 
of P. phalangioides. Instead, the 1H NMR spectra for the PSAs of 
P. phalangioides had at least two multiplets not found in the spectra of 
any other spider’s PSAs. One was found at ~δH 3.2 ppm, and another 
at ~ δH 3.9 ppm. These peaks might represent the methyl resonances 
of certain amino acids (Mendz et al., 1989). However, amino acid 
methyl groups should not appear at these chemical shift values if not 
closely associated with oxygen species (Mendz et al., 1989). These 
peaks are also at chemical shifts similar to what we might expect for 
betaine. Notwithstanding, the peaks found in the MS spectra at 
around 116 m/z (see Supplementary Figures S11, S13) provide 
evidence enough to suggest that the PSA of P. phalangioides certainly 
must contain a detectable amount of L-proline.

Discussion

We herein elucidated the compositional profiles of organic salts in 
the pressure sensitive adhesives of four phylogenetically disparate 
species of spider (Argiope keyserlingi, Latrodectus hasselti, Steatoda 
grossa, and Pholcus phalangioides) using 1H Nuclear Magnetic 
Resonance spectroscopy and mass spectrometry. Previously 1H NMR 
analyses had been performed for congeners of A. keyserlingi and 
L. hasselti, albeit using lower field (300 MHz rather than 600 MHz) 
instrumentation (Vollrath et al., 1990; Jain et al., 2015, 2016, 2018), 
and yielded reasonably similar results. This study represents the first 
analysis of organic salt composition within the glues of Steatoda and 
Pholcus species. Since the members of the genus Pholcus appear to 
have evolved their gluey secretion independently from those of 
orb-web and cobweb spiders (i.e., the areneoids), our study stands to 
significantly expand knowledge about spider glue diversity and 
evolution, and our understanding of the chemical diversity of natural 
PSAs. Remarkably, while the composition of the PSAs of 
P. phalangioides is comparably simple compared to those of the 
distantly related araneoids, all of the spider’s PSAs appear to be based 
on a common principle, i.e., that of enabling the softening of a 
proteinaceous material through the addition of organic salts. While 
the relative concentrations of the salts differed, the recruitment of the 
same ubiquitous compounds, such as GABA, choline, isethionic acid, 
or betaine, recurs remarkably frequently.

Other 1H NMR studies of spider PSAs have found relatively high 
compositions of GABA/GABA-amide (i.e., >40%) in other orb web 
spider glues, including those of Aranues diadematus, Araneus 
cavaticus, Araneus marmoreus, Neoscona crucifera, and Argiope 
aurantia (Vollrath et al., 1990; Opell et al., 2018). The former-most is 
a congener of A. keyserlingi so we speculate that similar compounds 

might be expect in the PSAs of related spiders. Intriguingly, however, 
these other studies (Vollrath et al., 1990; Jain et al., 2018) have found 
that yet another species of spider from the genus Argiope, i.e., 
A. trifasciata, has a low GABA/GABA-amide composition within its 
gluey secretions (~6% or less). We are unsure as to why the GABA/
GABA-amide component from that particular species’ PSA is so 
different from those of most other species of Argiope. Diet, habitat and 
geography have been proposed as factors affecting the composition of 
compounds within the PSAs of different species of Argiope (Blamires 
et al., 2014, 2017; Henneken et al., 2017; Opell et al., 2018; Henneken 
et al., 2022). However, considering the general homogeneity in habitat 
use and diet within the genus Argiope, we have no reason to suspect 
that the diets, habitats or geographies of the A. trifasciata spiders 
sampled in the aforementioned studies differed substantially from 
those of A. keyserlingi.

Our findings, along with those of Vollrath et al. (1990), point to 
there being variation in the organic salt composition within the PSAs 
of related species (e.g., between species of Argiope). This may suggest 
that the composition of any given spider’s PSA is more of a 
consequence of its environment, or other immediately imminent 
circumstance, than evolutionary history. We note that two Latrodectus 
species from very different locations (i.e., L. hasselti from eastern 
Australia and L. hesperus from North America) had relatively similar 
PSA components (c.f. this study and Jain et  al., 2018), suggesting 
phylogeny may well be a factor in determining each of the spider’s PSA 
compositions. Nevertheless, a comparison of the organic salt 
compositions of the Latrodectus species PSAs with those of Steatoda 
grossa (which also belongs to the family Theridiidae) suggests that 
phylogenetic effects are not the primary determinant of the 
observed variability.

It has been hypothesized that the salt composition of a particular 
spider’s PSAs correlates with the humidity of its habitat (Opell et al., 
2018). The premise here is that spider webs placed in dry 
environments, for instance those found in open fields and forests 
during the day experience a greater threat of dehydration than those 
placed in humid environments, such as closed forests at night, so need 
to explicitly invest in hygroscopic salts to augment atmospheric water 
uptake into the PSAs. As stated, comparisons of our findings with 
those of Jain et  al. (2016, 2018) shows that the two species of 
Latrodectus found on different continents have remarkably similar 
organic salt compositions within their PSA profiles. This finding 
could, however, be explained by both species being found in dry, 
sheltered, urban environments. The organic salt compositions in the 
PSAs of three species of Argiope (A. aurantia, A. trifasciata, and 
A. keyserlingi), all of which likely inhabit relatively similar dry 
temperate grassland habitats, differ substantially from each other (i.e., 
GABA is abundant in the PSAs of A. keyserlingi and A. auranta, but is 
virtually absent in those of A. trifasciata).

Another hypothesis posits that the spider’s diet can influence the 
composition of its PSAs, either by directly affecting the nutrients 
available for investment in organic salts or because the spiders are 
induced to alter their investment into organic salts and other PSA 
compounds in order to tune the adhesive properties of their web’s 
capture threads (Blamires et  al., 2014, 2015, 2017). Without 
corresponding stickiness testing we were unable to specifically address 
this hypothesis. Other hypotheses suggest that the organic components 
in spider PSAs vary across and within species because of the need to 
invest in pheromones, allomones, and other signalling compounds 
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(Maji et  al., 2014; Henneken et  al., 2017). Among the organic 
compounds found in spider PSAs that may vary for this reason are 
GABA-amide and N-acetyltaurine, and N-acetylputricine (Anderson 
and Tillinghast, 1980; Henneken et al., 2017). N-acetylputricine, when 
present, is found in relatively low concentrations (i.e., <10%) (as found 
here and elsewhere; Opell et al., 2018), so we cannot speculate much 
about the causes of its variation across species. N-acetyltaurine on the 
other hand is found in concentrations ranging from 2 to 25% across 
spider species, including A. keyserlingi (2%) and S. grossa (10%). It has 
been ascribed as one of the salts responsible for facilitating the uptake 
of atmospheric water by the gluey droplets (Townley et  al., 1991; 
Edmonds and Vollrath, 1992; Sahni et  al., 2014a). Since 
N-acetyltaurine appears in higher concentrations in the PSAs of 
nocturnal forest-dwelling spiders than diurnal grassland spiders 
(Opell et al., 2018), we concur with speculation that its concentration 
in spider PSAs is likely driven by habitat and/or humidity.

GABA-amide and/or GABA was found in highly variable amounts 
across all of the spider’s PSAs with the exception of P. phalangioides, 
where it was detected in trace amounts, if at all. It is also found in large 
quantities in the PSAs of the orb web spiders Argiope aurantia, 
Araneus marmoreus, Aranues cavaticus, and Neoscona crucifera, as 
well as the cobweb spider Latrodectus hesperus (Jain et al., 2015, 2018). 
Nevertheless, the compounds are found in relatively low 
concentrations in Argiope trifasciata (Vollrath et al., 1990; Jain et al., 
2018), and are absent in Verrecosa arenata (Opell et  al., 2018). 
Different assaying methods across the different studies might explain 
some of the variation. However, it cannot explain shifts from its 
predominance (>70%) in some instances, to virtual absence in others. 
There seems to be factors other than humidity, diet, or inter−/intra-
specific signalling, driving investment in the different GABA-derived 
compounds in the PSAs of spiders. Another possibility is that, since 
they have the same function (i.e., mobilizing the glycoproteins to keep 
them hydrated and tacky), many of the organic salts are replaceable 
and different spiders have recruited one or another salt depending on 
diet or some other circumstances.

Conclusion

We herein determined the composition of the water-soluble 
fraction in the PSAs from four different Australian spiders, each of 
which have, to date, not been previously investigated. Our results 
demonstrate that analogous spider PSAs are comprised of 
concentrations of organic salts that are both similar and ubiquitous, 
but their relative abundances will often vary considerably between 
species. Comparisons across species within our study, and those 
examined in other studies (e.g., Vollrath et al., 1990; Jain et al., 2018), 
suggest that, while guided by common underlying principles, there is 
not any discernible evolutionary trend in the organic salt composition 
in the PSAs of different spiders. More likely, factors such as habitat, 
humidity, diet, and within/between species chemical signalling needs, 
are most likely driving the individual chemical compositions.

Given the comparatively low diversity of compounds residing in 
the glues of the species examined herein, it seems that adhesion is 
attained by a similar biochemical means across species. By examining 
the chemistries of a wider range of spider glues, as well as the glues of 
other animals that produce glues with similar functionalities, e.g., 
comb jellies, mussels, velvet worms, and Arachnocampa glow worms 

(von Byern et al., 2017; Blamires, 2019; Wolff et al., 2021), common 
features underlying the functionality of all animal PSAs could 
be revealed, demonstrating a promising bioprospecting approach for 
the design of novel, sustainable, adhesives with extended functions.
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