1,806 research outputs found

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    An 84 microGauss Magnetic Field in a Galaxy at Redshift z=0.692

    Full text link
    The magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars. The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ~ 3 microGauss. The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain. Here we report a measurement of a magnetic field of B ~ 84 microGauss in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 microGauss in the neutral interstellar gas of our Galaxy. This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past rather than stronger

    Anticarbamylated protein antibodies are associated with long-term disability and increased disease activity in patients with early inflammatory arthritis:Results from the Norfolk Arthritis Register

    Get PDF
    Objectives: Anticarbamylated protein (anti-CarP) antibodies are a novel family of autoantibodies recently identified in patients with inflammatory arthritis. The aim of this study was to investigate their association with long-term outcomes of disability and disease activity over 20 years’ follow-up in a cohort of patients with inflammatory polyarthritis (IP).  Methods: Norfolk Arthritis Register recruited adults with recent-onset swelling of ≥2 joints for ≥4 weeks from 1990 to 2009. At baseline, Health Assessment Questionnaire (HAQ) and 28 joint disease activity scores (DAS28) were obtained, and C reactive protein, rheumatoid factor (RF), anticitrullinated protein antibodies (ACPA) and anti-CarP antibodies were measured. Further HAQ scores and DAS28 were obtained at regular intervals over 20 years. Generalised estimating equations were used to test the association between anti-CarP antibody status and longitudinal HAQ and DAS28 scores; adjusting for age, gender, smoking status, year of inclusion and ACPA status. Analyses were repeated in subgroups stratified by ACPA status. The relative association of RF, ACPA and anti-CarP antibodies with HAQ and DAS28 scores was investigated using a random effects model.  Results: 1995 patients were included; 1310 (66%) were female. Anti-CarP antibodies were significantly associated with more disability and higher disease activity, HAQ multivariate β-coefficient (95% CI) 0.12 (0.02 to 0.21), and these associations remained significant in the ACPA-negative subgroups. The associations of RF, ACPA and anti-CarP antibodies were found to be additive in the random effects model.  Conclusions: Anti-CarP antibodies are associated with increased disability and higher disease activity in patients with IP. Our results suggest that measurement of anti-CarP antibodies may be useful in identifying ACPA-negative patients with worse long-term outcomes. Further, anti-CarP antibody status provided additional information about RF and ACPA

    HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Get PDF
    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al

    Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84

    Get PDF
    The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed

    Interleukin-1 polymorphisms associated with increased risk of gastric cancer

    Get PDF
    Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA-protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do no

    The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle

    Get PDF
    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    The Spatial and Temporal Deployment of Voluntary Attention across the Visual Field

    Get PDF
    Several studies have addressed the question of the time it takes for attention to shift from one position in space to another. Here we present a behavioural paradigm which offers a direct access to an estimate of voluntary shift time by comparing, in the same task, a situation in which subjects are required to re-engage their attention at the same spatial location with a situation in which they need to shift their attention to another location, all other sensory, cognitive and motor parameters being equal. We show that spatial attention takes on average 55 ms to voluntarily shift from one hemifield to the other and 38 ms to shift within the same hemifield. In addition, we show that across and within hemifields attentional processes are different. In particular, attentional spotlight division appears to be more difficult to operate within than across hemifields
    • …
    corecore