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Abstract

The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-
types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis
and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated
heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when
crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/2)
animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-
specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery
by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389
phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to
wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10
weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations
in gastrocnemius muscle were reduced by ,40% as dietary protein content was reduced from 30 to 10%. These changes
were associated with .50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating
reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same
diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger
gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling
in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal
muscle mass.
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Introduction

Amino acids (AAs) are both raw materials and fuel for protein

synthesis and hence for growth and development of the human

body. Large neutral amino acids (LNAA), especially leucine, also

exert a permissive effect on the intracellular mTOR-S6K

(mTORC1) cell-signalling pathway which promotes net protein

synthesis and cell growth (e.g. [1,2] for review). It is clear from

previous findings [3,4,5,6] that the System L1 (leucine-preferring)

AA transporter is a key early player in transduction of an

extracellular LNAA stimulus to signalling pathways such as

mTORC1 and may therefore have functional importance for

control of cell and body growth, as well as in the coupling of

growth and survival signals (e.g. from growth factors). The System

L1 transporter is an Na+-independent obligatory exchanger of

LNAA (substrates include aromatic and branched-chain amino

acids and iodothyronines such as T3) which is composed of two

protein subunits: a catalytic LNAA permease (either SLC7A5/

LAT1 or SLC7A8/LAT2 aka CD98lc) and a regulatory

glycoprotein (SLC3A2; also known as 4F2hc or CD98hc).

SLC7A5 transport characteristics conform to that of System L1

transport, the SLC7A5 System L1 transporter isoform is expressed

in many tissues including skeletal muscle, adipose, placenta and

brain. It is therefore likely to be a major contributor to cellular and

whole-body fluxes of LNAA, especially given that SLC7A5

substrates include 6 of 8 dietary-essential AAs. The expression of

Slc7a5 more closely and selectively correlates with System L1

transport function than expression of Slc3a2; indeed the latter

associates with several different SLC7 permeases and other cell

surface proteins [7].
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SLC7A5 is able to modulate intracellular LNAA concentrations

(and consequently signalling downstream of intracellular AA

sensors) through a process of coupled AA transport, for example

with the Na+-coupled SLC38A2 (SNAT2) or SLC1A5 (ASCT2)

transporters which pump AA such as glutamine into cells as an

exchange substrate for essential LNAA entry through SLC7A5

[5,8]. Expression of Slc7a5, Slc3a2 and Slc38a2 in skeletal muscle is

rapidly (though transiently) upregulated following essential AA

ingestion in humans [9] and is associated with the muscle protein

anabolic response. Such observations highlight an increasing

recognition that these AA transporters may be limiting compo-

nents for generation of an anabolic response to dietary protein, in

terms of both substrate supply and an activating signal for mRNA

translation [9,10]. The HIF2a pathway increases mTORC1

activity by directly upregulating the expression of Slc7a5 [6] and

a variety of other signalling inputs influence the effectiveness of

LNAA as mTORC1 activators (eg. [11,12,13]). The realization

that essential AA (EAA) such as leucine are required for full

activation of mTORC1 signalling downstream of insulin and other

growth factors has prompted numerous recent studies on the

possible use of dietary leucine as an adjunct treatment for insulin

resistance related to obesity (e.g. [14,15,16]).

In this context, the relationship between the SLC7A5 LNAA

transporter function and anabolic signalling in vivo requires closer

scrutiny. To this end, we have generated a transgenic mouse line

in which the gene encoding Slc7a5 includes LoxP sites, flanking a

1855bp region of the Slc7a5 gene. The flanked region includes the

transcription start site and 1st exon (Slc7a5-Flox). These LoxP sites

are targets of recombinase which excises this part of the gene to

knockout Slc7a5 expression in mice containing both Slc7a5-Flox

and Cre transgenes. Here, we investigate the functions of SLC7A5

in mouse physiology by studying mouse strains harbouring a Cre-

LoxP conditional knockout in skeletal muscle, in order to establish

the importance of LNAA delivery by SLC7A5 for activation of the

mTOR-S6K signalling pathway and its relationship to control of

muscle mass in vivo.

Materials and Methods

Ethics Statement
Mice were housed in animal facilities at the University of

Dundee (UK) and in the National Institutes of Health (USA). All

animal breeding and experimental procedures received ethics

committee approval and were performed under authority of either

PPL 60/3455 and 60/4118 (UK) or ASP 07/019 and 10/019

(USA). All procedures necessary for generation of the Slc7a5-Flox

mouse line were undertaken in the transgenic animal facilities of

the University of Dundee, under Home Office PPL 60/2365.

Generation of Targeting Vector Transgene and Chimeric
Mouse

The Slc7a5 gene was amplified by PCR in segments from BAC

clone RP23-428C21. Restriction sites were incorporated into the

primer sets (see Table 1), directing insertion of restriction sites at

the end of amplicons. A transgenic targeting construct (Figure 1A)

was assembled in sections that included a neomycin-resistance

cassette and a herpes simplex thymidine kinase gene. To increase

targeting efficiency, a polyA trap neomycin cassette was used in

which the neo open reading frame was followed by an IRES

sequence and the splice donor sequence from exon1 of the Slc7a5

gene. The construct was electroporated into E14 mouse embry-

onic stem (ES) cells and those with homologous recombination of

the Slc7a5 transgene were identified through negative and positive

Table 1. Sequences of DNA primers for transgenic construct and for genotyping SLC7A5 transgenic mice.

Oligo Use Sequence

1 Homology arm 1, sense, NotI CTGCGGCCGCGATCATCTTGCCTGTGGTTGGAACTCAAAGTTC

2 Homology arm 1, antisense, BamHI, loxP, SbfI CTGGATCCATAACTTCGTATAGCATACATTATACGAAGTTATCCTGCAGGGAAAATTTCATTGGTCAAG-
ATAAGTCCAGGAGC

3 KO sense, BamHI CTGGATCCCAAGCGTACCATCAGCTCAAATTACACAG

4 KO antisense, FseI, NsiI, loxP CTGGCCGGCCATGCATATAACTTCGTATAGCATACATTATACGAAGTTATCCCACTGAGGTCTCGCGA-
GGGCTG

5 Homology Arm 2, sense, SpeI, frt GCACTAGTGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAA-
GTATAGGAACTTCTCGCGGCTCTGACCCCGCGG

6 Homology Arm 2 antisense, AscI CTGGCGCGCCCCAGGTCAAGTCGACAGCACCC

7 Splice donor, sense, PacI, Kozak GCTTAATTAAGCCACCATGGCGGAGGTCTACGGCTCGTTGCC

8 Splice donor 39 SpeI, loxP GCACTAGTATAACTTCGTATAGCATACATTATACGAAGTTATCCCACTGAGGTCTCGCGAGGGC

9 59 loxP site screening, sense, GGCTCCTGGACTTATCTTGACCAATG

10 59 loxP site screening antisense AGATAATGTGGTCACACATCTGGAAGGTTC

11 RT-PCR primer, sense TGCACATGCTTTACATGTGTTTAGTCGAGG

12 39 loxp screening, sense, TGAACCATCTCGGCAGTTCCAGGC

13 39 loxp screening/Neo cassette screening antisense GTGGTGCTTTGCTGAAGGCAGGG

14 RT-PCR primer, antisense CAGATTGGTGCCTTCAAAGGACAACTTC

15 Neomycin cassette screening sense AGCTGGGCACCACCATCTCCAAG

16 Forward primer to amplify FLPe recombinase CACCTAAGGTCCTGGTTCGTC

17 Reverse primer to amplify FLPe recombinase CCCAGATGCTTTCACCCTCAC

18 Forward primer to amplify Cre recombinase AAATGGTTTCCCGCAGAACC

19 Reverse primer to amplify Cre recombinase TAGCTGGCTGGTGGCAGATG

doi:10.1371/journal.pone.0089547.t001
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selection using neomycin and glanciclovir, respectively [17]. ES

cells were then screened by RT-PCR using primers with binding

sites located in the IRES element in the SLC7A5 targeting

construct and in exon3 of the Slc7a5 gene, which is located

downstream of the vector insertion site (Figure 1A and 1B). ES

cells that expressed the product of the IRES (and therefore

harboured the transgene) were selected for implantation into

mouse embryos. Chimeric mice which gave germline transmission

were crossed with Flpe transgenic mice to remove the neomycin

selection cassette.

Animals
All animals were maintained on a 12/12 h light/dark cycle and

had access to food and water ad libitium. The standard laboratory

diet contained 14–20% (w/w) dietary protein, and the high (30%)

medium (20%) and low (10%) w/w crude protein diets (Special

Diets Service) were also isoenergetic (3.9 kcal AFE/g). Mice were

weighed on a regular basis to assess growth rate.

Genotyping of Mice by PCR
Ear (UK) or tail (USA) biopsies were taken from mice either

aged $21 days or from pups sacrificed on date of birth. Genomic

DNA was extracted from the biopsies using the DNeasy Blood and

Figure 1. Slc7a5-Flox gene construct and mouse genotyping scheme. (A) Graphical representation of the Slc7a5-Flox construct used to
generate the chimera. Primer locations used for vector assembly and genotyping are indicated and primer sequences shown in Table 1. LoxP sites
(grey-filled triangles), FRT sites (white-filled triangles), phosphoglucokinase (PGK) promoter-driven neomycin-resistance gene (PGK-neo) and
thymidine kinase gene (TK) are shown. The splice donor (SD) was incorporated into the targeting construct to allow correct splicing of the transcript
generated from the PGK promoter only if the targeting construct is inserted within an intron (see B). (B) to (D) Representative PCR genotyping results.
(B) RT-PCR screen of RNA from mouse embryonic stem cells using 11–14 primer pair, a 500 bp product would indicate correct joining of the exonic
sequence from the splice donor with exon3 of Slc7a5. Gel shows RT-PCR for a positive ES cell population (+) or control cells (–). (C) Genotyping PCR
for the 59 loxP site using DNA from C57Bl/6 (WT) or a mixed litter of wild-type (2) and heterozygous Slc7a5 FloxNeo (+/2) (3, 5, 6, 7) mice as a template
resulted in either a product of 202 bp or products of 202 and 250 bp, respectively using the 9–10 primer pair. For 39 loxP site genotyping, PCR using
primer pair 12–13 (note primer 12 is duplicated in SD) generated a 230 bp product from wild-type samples or products of 230 and 318 bp from
heterozygotes. (D) PCR analysis of genomic DNA from a single mixed litter of heterozygous Slc7a5-Flox (2,3,4,7) and Slc7a5+/2 (1,5,6,8) mice using
the 9–13 primer pair which generates a product of 235 bp only with the recombined Slc7a5 gene lacking the 1855 bp floxed region (which includes
exon1).
doi:10.1371/journal.pone.0089547.g001
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Tissue kit (Qiagen) or the microLysis-plus solution (Web Scien-

tific). To determine the genotypes of individual mice, three sets of

primers were used (see Figure 1, Table 1). For each genotyping

reaction, 2 ml of genomic DNA was used with 1 mM of each

primer and the GoTaq Green Master Mix (Promega). For 9–10

and 9–13 sets of primers, the PCR program was 95uC, 3 min;

[95uC, 30 s; 61uC, 30 s; 72uC, 1 min] (40 cycles); 72uC, 2 min.

And for the Cre set of primers (18–19), the PCR program was

94uC, 4 min; [94uC, 1 min; 55uC, 2 min; 72uC, 3 min] (35

cycles). PCRs were performed using a G-Storm GS1 thermal

cycler and PCR products were resolved on 2% (w/v) agarose gels

containing SYBR safe DNA stain (Invitrogen) in TAE buffer and

imaged under UV light.

Glucose Tolerance Test
After an overnight fasting (8 h), initial blood glucose level was

monitored from tail vein blood using the AlphaTRAK Blood

Glucose Monitoring System (Abbott). Then, glucose (2 mg/g body

mass) was administered intraperitoneally and blood glucose

monitored by tail bleeding over a 2 h period.

Leucine Injection
After an overnight fasting (8 h), NaCl (0.9%, w/v) or various

doses of Leucine (5, 10, 20, 40, 100, 200 mg/g body mass) were

administered intraperitoneally. Mice were sacrificed and dissected

10 min after injection.

Blood and Tissue Collection
Mice were killed by CO2 inhalation, blood was collected by

cardiac puncture and tissues were rapidly collected and weighed;

the intestines were flushed with PBS. Tissues were immediately

frozen in liquid N2 and stored at 280uC until processing. The

blood was centrifuged (1000 g, 20 min) in heparinized tubes to

separate into plasma and cells. Plasma insulin levels were

determined using a commercial ELISA kit (Mercodia).

RNA Extraction from Mouse Tissues and cDNA Synthesis
Harvested mouse tissues were ground to a powder under liquid

N2 with a mortar and pestle, #30 mg of tissue were lysed using the

TRI Reagent (Sigma-Aldrich) and RNA was extracted using the

RNeasy mini kit (Qiagen) according to the manufacturer’s

instructions. Samples were DNase treated ‘on-column’ using

RNase-free DNase (Qiagen) according to the manufacturer’s

instructions. RNA concentration was determined using a Nano-

drop (Agilent Technologies) and 500 ng was used to synthesize

single strand cDNA in 20 ml reactions using the qScript cDNA

Synthesis Kit (Quanta Biosciences), the resultant cDNA was stored

at 220uC until use.

Quantitative Real Time Reverse-transcriptase PCR
Quantitative PCR (qPCR) primers were designed using the

NCBI primer blast tool (http://www.ncbi.nlm.nih.gov/tools/

primer-blast/) to produce amplicons crossing an exon boundary;

specific sequences are reported in Table 2. In the generated mouse

line described herein, exon1 of the Slc7a5 gene is targeted for Cre-

LoxP mediated excision, so primer sets were designed spanning

the 1–2 exon boundary of the Slc7a5 gene to test for selective

knockout of Slc7a5 in mice of differing Slc7a5 transgenic genotypes.

For each qPCR, Slc7a5 was normalised to b-Actin concentration

using gene specific primers. Single strand cDNA synthesized from

mouse tissue RNA was diluted 1:5 (intestine), 1:10 (heart) or 1:2

(diaphragm, gastrocnemius) with nuclease free water and qPCR

was performed in a 96-well format using an Applied Biosystems

StepOne thermal cycler (Applied Biosystems Life Technologies).

Reactions consisted of 2 ml of diluted cDNA per well, SYBR

Green JumpStart Taq ReadyMix (Sigma-Aldrich) and 0.5 or 1 mM

of each primer in a 20 ml total reaction. Thermal cycling

conditions were an initial denaturation step of 95uC for 15 mins,

and then 40 cycles of 94uC for 15 secs, 56uC for 30 secs and 72uC
for 30 secs; stasis at 4uC until analysis. Each experimental cDNA

was measured in triplicate with both Slc7a5 and b-Actin primers.

For each plate, a standard curve was produced using both Slc7a5

and b-Actin primers and sequential dilutions (561:5) of a cDNA

synthesized from control mouse RNA (Zygene). The relative

quantity of Slc7a5 mRNA in each sample was normalized to b-

Actin mRNA abundance using StepOne software and qPCR

results expressed as (Slc7a5/b-Actin) mRNA.

Immunoblot
To provide good negative and positive controls, mice were

intraperitoneally injected with NaCl (0.9% w/v) or Insulin (2 mU/

g body mass) after a 6 h fasting period. Tissues were collected after

10 min. Heart, gastrocnemius (50 mg) or soleus muscles (12 mg)

were homogenized using a Polytron in lysis buffer [50 mM Tris/

HCl (pH 7.4), 0.27 M sucrose, 1 mM sodium orthovanodate,

1 mM EDTA, 1 mM EGTA, 10 mM sodium b-glycerophos-

phate, 50 mM NaF, 5 mM sodium pyrophosphate, 1% (v/v)

Triton X-100, 0.1% (v/v) 2-mercaptoethanol and Protease

Inhibitors (Roche)]. Lysates (60 mg) were separated by SDS-PAGE,

and transferred to Immobilon-P membranes (Fisher Scientific).

Table 2. Sequences of primers used to quantify mRNA by PCR (Q-PCR analysis) alongside the melting temperature (Tm) of each
primer set.

Gene Sequence 59 to 39 Length (bp)
% GC
content Tm (6C) Product length (bp)

b-Actin forward ATGCTCCCCGGGCTGTAT 18 61 60.5 63

b-Actin reverse CATAGGAGTCCTTCTGACCCATTC 24 50 60.2

Slc7a5 forward CTGGTCTTCGCCACCTACTT 20 55 59.4 127

Slc7a5 reverse GCCTTTACGCTGTAGCAGTTC 21 52 59.6

Slc7a8 forward AAGAAGCCTGACATTCCCCG 20 55 60.0 180

Slc7a8 reverse TGTGTTGCCAGTAGACACCC 20 55 59.9

ATF-4 forward AGCAAAACAAGACAGCAGCC 20 50 59.6 192

ATF-4 reverse ACTCTCTTCTTCCCCCTTGC 20 55 59.0

doi:10.1371/journal.pone.0089547.t002
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Blots were probed with antibodies recognizing phospho-S6K

[Thr389], S6K, phospho-AMPK [Thr172] (1:1000 dilution) (Cell

Signaling Technology), AMPKa1/2 (purified sheep polyclonal

antibody to a peptide TSPPDSFLDDHHLTR for a1 and

MDDSAMHIPPGLKPH for a2–1:5000 dilution) [18], actin

(1:2000 dilution) (Sigma Aldrich), SLC7A5 (purified rabbit poly-

clonal antibody to a peptide CQKLMQVVPQET) (1:250 dilution)

[19]. Primary antibody detection was performed with the appro-

priate HRP (horseradish peroxidase)-conjugated anti-rabbit or anti-

mouse IgG and resulting signals visualized using enhanced

chemiluminescence by exposure to Amersham hyperfilm ECL

(GE Healthcare). For phospho-AMPK [Thr172] and AMPKa1/2

antibodies, detection was performed using secondary antibody

(1 mg/ml) coupled to IR 680 or IR 800 dye, and the membranes

scanned using the Li-Cor Odyssey IR Imager. Immunoblots were

quantified using the ImageJ software.

Amino Acid Analysis by HPLC
20 mg of ground gastrocnemius muscle or 50 ml of plasma were

homogenized in Trifluoroacetic acid and Methanol (1:10).

Supernatants were dried off in a rotary evaporator at 46uC.

Samples were suspended successively in Sodium acetate, Metha-

nol, TEA (2:2:1), Methanol, H2O, TEA, PITC (7:1:1:1) and

Methanol (100%) with drying steps between each step. The

resulting phenylthiocarbamyl peptides were separated by a

Hewlett Packard 1050 HPLC system (Minnesota, USA) with

post-column UV detection (254 nm). HPLC traces were analyzed

using the Clarity Lite software.

Phenylalanine Uptake
Paired soleus muscles and hemidiaphragms were dissected from

individual animals and, for each muscle type, one of the pair was

incubated in Transport Buffer [121 mM NaCl, 4.9 mM KCl,

2.5 mM MgSO4, 20 mM Tris-HCl, 1 mM CaCl2, pH 7.4]

containing 5 mM Phe while the other was incubated in identical

buffer containing excess (20 mM) Phe. Both solutions contained
3H-Phe at 18.5kBq/ml. Following a timed incubation

(10–15 min), the muscle samples were rapidly rinsed in PBS and

lysed overnight in lysis buffer [50 mM NaOH, 1% SDS] at 55uC.

The radioactivity in each sample was measured using liquid

scintillation counting. Protein concentration of each sample was

measured using the BCA protein assay (Pierce). The rate of

saturable phenylalanine uptake into diaphragm and soleus was

then calculated as (total AA uptake [3H-Phe tracer uptake in the

presence of 5 mM Phe]) – (non-saturable AA uptake [3H-Phe

tracer uptake in the presence of excess (20 mM) Phe]). Data is

expressed as saturable uptake/mg total protein/min.

Statistical Analysis
Results are expressed as mean value 6 S.E.M for n

measurements or experiments denoted in figure legends. Statistical

analysis was performed using either two-way ANOVA (diet 6
genotype interactions) with Bonferroni post t-test or by unpaired

Student’s t-test as appropriate using GraphPad Prism software.

Significance was assigned at *p,0.05, **p,0.01, ***p,0.001.

Results

Generation of Slc7a5-Flox Mouse Line
The Slc7a5 targeting construct (Figure 1A), which included

FLPe sites for in vivo removal of the neomycin-IRE-SD selection

domains [20,21], was transfected into mouse ES cells. Cells with

homologous recombination of the Slc7a5 targeting construct (in

which one copy of the endogenous Slc7a5 gene from 25787 to +

2875 was replaced by the corresponding regions of the targeting

vector; Slc7a5-FloxNeo) were selected by neomycin-resistance and

confirmed by RT-PCR using primers 11 and 14 (Figure 1B)

followed by cloning and sequencing of the PCR product.

Subsequently, positive cells were injected into isolated mouse

blastocysts which were then implanted into the uterus of

pseudopregnant female mice. Male chimeric offspring (identified

by coat colour) were mated with wild-type female C57Bl/6 mice.

Offspring of these mice were genotyped by PCR with primer sets

9–10 and 12–13, which allowed the identification of those animals

harbouring the 59 and 39 loxP sites, respectively, at the desired

locations (Figure 1C). Founder Slc7a5-FloxNeo mice were crossed

with FLPe recombinase-expressing mice to produce offspring in

which the neomycin-IRES-SD selection cassette was removed by

recombination at the FRT sites. This was confirmed by PCR using

primers 15 and 13, which resulted in a 673 bp product for wild-

type allele (data not shown). The FLPe transgene was bred out by

backcross with C57Bl/6 mice to produce the final Slc7a5-Flox

(FLPe-) genotype suitable for breeding with Cre-expressing mice to

produce Slc7a5 knockout offspring. Multiple self-crosses showed

that heterozygous and homozygous mice with Slc7a5-Flox

genotype (Slc7a5fl/+ Slc7a5fl/fl respectively) were viable and fertile

with no detectable abnormalities.

Global Slc7a5 Knockout is Embryonic Lethal
Slc7a5-Flox mice were crossed with two different strains of

germline Cre recombinase-expressing mice (Bal1-promoter Cre

and Elalpha-promoter Cre) to remove the Floxed exon1 of the

Slc7a5 gene. Genotyping of the knockout animals was carried out

by PCR analysis using the 9–13 primer pair, which generates a

product of 253 bp only with the recombined Slc7a5 gene lacking

the 1855 bp floxed region including exon1 (Figure 1D). Hetero-

zygous Slc7a5 gene knockout mice (both Bal1-Cre Slc7a5+/2 and

Elalpha-Cre Slc7a5+/2) were found to be viable, fertile and

phenotypically similar to wild-type littermates with equivalent

growth profiles and food intakes (data not shown). Numerous

discrete self-crosses of Slc7a5+/2 mice failed to produce offspring

with a genotype of Slc7a52/2 for either Cre line (p,0.01; X2-test

based on expected Mendelian frequencies, N = 108 live births). A

global homozygous Slc7a5-knockout therefore appears to be

embryonic lethal. The Bal1-Cre and Elalpha-Cre transgenes were

bred out by backcross with C57Bl/6 mice to produce Slc7a5+/2

mice for physiological studies.

Functional Reduction in Slc7a5 Expression in Slc7a5+/2
Mice

Slc7a5 mRNA expression was significantly reduced (by around

half) in heart, skeletal muscle (e.g. diaphragm) and liver of

Slc7a5+/2 mice in comparison with Slc7a5+/+ littermates

(Figure 2). Reduced SLC7A5 protein expression was also detected

in heart and soleus muscle of Slc7a5+/2 mice relative to

Slc7a5+/+ littermates (Figure 2C). We confirmed a reduction in

functional SLC7A5 expression in diaphragm muscle by demon-

strating that 5 mM phenylalanine uptake was significantly lower in

Slc7a5+/2 diaphragm compared to wild-type controls (Figure 2B).

Nevertheless, there were no significant differences between mass of

tissues including skeletal muscles (gastrocnemius, soleus), heart or

liver for Slc7a5+/2 mice and wild-type littermates (data not

shown), nor in AA content of tissues or plasma (Table S1).
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Reduced Functional Slc7a5 Expression in Muscle-specific
MCK-Cre Slc7a5fl/fl (MS-Slc7a5-KO) Mice

In the absence of viable Slc7a52/2 progeny, we were unable to

investigate the global importance of SLC7A5 to nutrient-signalling

upstream of the mTORC1 pathway and its functional conse-

quences. Given the important protein-anabolic effects of

mTORC1 activation, we decided to focus on the effects of Slc7a5

knockout in skeletal muscle, the tissue with greatest protein mass in

the body. Slc7a5fl/fl mice were crossed with mice expressing Cre

recombinase downstream of a muscle-specific promoter, MCK

(muscle creatine kinase promoter) – Cre [22], to produce a muscle-

specific (MCK-Cre) knockout of Slc7a5. MCK-Cre Slc7a5fl/fl (MS-

Slc7a5-KO) mice were viable, fertile and born at standard

Mendelian frequency. Genotyping PCR of gastrocnemius muscle

confirmed Cre-dependent Slc7a5 gene excision (Figure S1B) and

analysis of Slc7a5 gene expression in gastrocnemius muscle by

qPCR confirmed a substantial reduction of Slc7a5 mRNA

expression in muscle of MS-Slc7a5-KO mice (Figure 3). The

residual Slc7a5 mRNA in whole muscle extract is likely to be

largely expressed in reticuloendothelial and fibrous tissue [7,23].

Soleus and diaphragm muscles from these mice both showed

significant reductions in phenylalanine uptake consistent with

functional knockout of the Slc7a5 gene (Figures 3B and S1A),

although there was no overt growth phenotype for MS-Slc7a5-KO

mice (Figure 3C). There were no significant differences in

intramuscular or plasma concentrations of leucine or glutamine

(two key SLC7A5 substrates) between MS-Slc7a5-KO and control

mice fed ad libitum on laboratory chow diet (14% protein) (Figure 4).

In contrast, fasting (8 h over dark period) produced significant

reductions in intramuscular concentrations of leucine and

glutamine only in wild-type animals (Figure 4), indicating that

these AA may be less able to efflux from skeletal muscles of MS-

Slc7a5-KO mice; similar effects were noted for other neutral AA

(Figure S2A). Plasma AA concentrations of both mouse genotypes

showed similar changes with fasting (Figures 4B and S2).

Reduced Leucine-activated mTORC1 Signalling in
Skeletal Muscle of MS-Slc7a5-KO Mice

We next investigated the ability of leucine to activate mTORC1

signalling in vivo by intraperitoneal injection of leucine in 8-hour

Figure 2. Both Slc7a5 gene expression and SLC7A5 transport activity are reduced in Slc7a5+/2 mouse tissues. (A) Slc7a5 mRNA
expression in liver, heart and intestine (as indicated) from Elalpha-Cre Slc7a5+/+ (n = 5–9) and Slc7a5+/2 (n = 4–5) mice as determined by qPCR and
normalized to b-Actin. Intestine was determined not significant (N.S.) although p,0.1. (B) Slc7a5 mRNA expression in diaphragm from Slc7a5+/+ and
Slc7a5+/2 mice as determined by qPCR and normalized to b-Actin (n = 6). Uptake of 3H-phenylalanine into diaphragm from Slc7a5+/+ and Slc7a5+/2
mice (n = 5). *and ***indicate p,0.05 and p,0.001 respectively by unpaired t-test. (C) Representative Western blot of SLC7A5 protein in heart and
soleus muscle lysates from from Slc7a5+/+ and Slc7a5+/2 mice. Blot quantitation shown in lower panels.
doi:10.1371/journal.pone.0089547.g002
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fasted wild-type mice. 10 minutes post-injection, we observed a

dose-dependent activation of muscle S6K (a downstream

mTORC1 target) at the rapamycin-sensitive Thr389 phosphory-

lation site (Figure 5A). The maximum activation of S6K by leucine

was less than 50% of the effect achieved when mice were injected

with insulin. We chose a leucine dose giving robust but

submaximal responses (40 mg/g) for further study, which resulted

in an approximate doubling of both plasma and intramuscular

leucine concentrations at the 10 minutes sampling point in wild-

type mice (Figures 5B, C), illustrating rapid replenishment of the

muscle leucine pool depleted by fasting. In contrast, there was no

increase in intramuscular leucine concentration after leucine

injection in MS-Slc7a5-KO mice (Figure 5C), although the initial

fasting intramuscular leucine concentration was higher than for

wild-type mice. There was a higher basal Thr389 phosphorylation

of S6K in MS-Slc7a5-KO mice compared to wild-type (Figure 5D),

but this remained submaximal for leucine-induced activation (c.f.

Figure 5A). The activation of S6K by injected leucine appeared to

be blunted in muscles of MS-Slc7a5-KO mice (Figure 5D).

Figure 3. Slc7a5 gene expression and SLC7A5 transport activity in MS-Slc7a5-KO mouse muscles and impact on tissue growth. (A)
Reduced expression of Slc7a5 mRNA in MS-Slc7a5-KO mouse gastrocnemius muscle (n = 24) compared to wild-type (n = 36). ***indicates p,0.001 by
unpaired t-test. (B) Reduced SLC7A5 (System L1) transport function (measured as Phe uptake) in MS-Slc7a5-KO soleus muscle (n = 4) compared to
wild-type (n = 6) *indicates p,0.05 by unpaired t-test. (C) No difference on the growth rate of MS-Slc7a5-KO and wild-type mice on standard chow
diet (14% protein) (n = 5).
doi:10.1371/journal.pone.0089547.g003

Figure 4. Effect of 8 h overnight fast on muscle and plasma amino acid (leucine, glutamine) concentrations in MS-Slc7a5-KO mice.
Mean 6 SEM for n = 6–9 (WT) and 3–5 (MS-Slc7a5-KO) mice. (A) Intramuscular AA are significantly lower after 8 h fast in WT animals but not MS-
Slc7a5-KO animals. *and ***indicate p,0.05 and p,0.001 respectively by Bonferroni’s post t-test). (B) Plasma glutamine concentrations are
significantly lower after 8 h fast for both genotypes (***indicates p,0.001 by Bonferroni’s post t-test), although an overall effect of fasting on plasma
leucine is detected (F (1, 19) = 5.49, p = .030), the difference does not achieve p,0.05 for either genotype.
doi:10.1371/journal.pone.0089547.g004
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Figure 5. Intraperitoneal leucine injection activates mTORC1 signalling in skeletal muscle. (A) Concentration-dependent effect of I.P.
leucine injection on mTORC1-S6K pathway activation in gastrocnemius muscle from fasted wild-type mice, compared to effect of insulin injection
(sampling 10 minutes post-injection in all cases) as shown by ratio of pS6K (T389)/S6K. (B) Effect of 40 mg/g leucine injection on plasma leucine
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Effect of Altered Dietary Protein Intake on Tissue AA
Concentrations and mTORC1 Signalling in Skeletal
Muscle of MS-Slc7a5-KO Mice

In order to provide further insight into possible impairment of

nutrient-signalling by muscle-specific Slc7a5 knockout, MS-Slc7a5-

KO and control mice were challenged with diets of 10%, 20% or

30% protein (low, control and high protein diets respectively) from

age 40 days for a 60-day period. Dietary protein compositions

were chosen to maintain equivalent energy intake by minimizing

possible effects on food intake. No difference was observed in

growth rates or food intake between genotypes or diets even

though a trend for small (,5%) reductions in heart and skeletal

muscle size was noted for MS-Slc7a5-KO mice on the different

diets (Figure S3). In wild-type mice, the leucine concentration in

gastrocnemius muscle was maintained at around 0.2 nmol/mg

across the 10–30% dietary protein range, despite a progressive

increase in plasma leucine concentration. In contrast, intramus-

cular leucine concentration in MS-Slc7a5-KO animals increased in

relation to dietary protein content whereas plasma leucine

concentration remained unaltered (Figures 6A and B). A similar

pattern was observed for isoleucine (Figure S4). On the 30% diet,

leucine, isoleucine and glutamine accumulated in muscle of MS-

Slc7a5-KO mice relative wild-type mice (Figures 6 and S4). In non-

fasted wild-type mice, intramuscular (gastrocnemius) mTOR-S6K

activity increased with dietary protein intake (Figures 6 and S5)

and was consistently higher than mTOR-S6K activity in muscle

from MS-Slc7a5-KO mice on both high- and low-protein diets

(Figures 6C and S5). This was observed in gastrocnemius muscle

of both male and female mice and also in soleus muscle (Figures

S5A and S5B respectively).

Effect of Altered Dietary Protein Intake on Indices of
Insulin-sensitivity in Skeletal Muscle of MS-Slc7a5-KO
Mice

In view of the reduced mTORC1 pathway activation in muscle

of MS-Slc7a5-KO mice challenged with high- or low-protein diets

and the importance of mTORC1 signalling to insulin action, we

evaluated insulin sensitivity of experimental mouse groups (male

animals only) on different protein diets. Within the range of

dietary protein studied (10–30%), we measured a graded increase

in insulin sensitivity (i.e. improved glucose clearance) in wild-type

animals from the 10% (low protein) to the 30% (high protein) diet

(Figure 7). However, the MS-Slc7a5-KO mice showed no such

increase, indicating that these animals may become relatively

insulin-resistant on a high-protein diet. Furthermore, these mice

tended towards a greater gonadal fat mass (Figure 7C), although

plasma insulin levels were not significantly different between

genotypes in the fed state (Figure S6).

Effect of Altered Dietary Protein Intake on Activity of
Other Growth and Nutrient-related Signalling Pathways
in Skeletal Muscle of MS-Slc7a5-KO Mice

Activation level of the AKT/PKB (Thr308 phosphorylation)

growth-factor signalling pathway was not affected by Slc7a5

genotype or dietary protein content (Figure S6C). An effect of

dietary leucine supplementation in the improvement of insulin

sensitivity has been linked to action of the energy-sensitive AMPK

(59 adenosine monophosphate-activated protein kinase) pathway

[14]. Activation of the cellular-energy sensor AMP kinase leads to

an inhibition of mTORC1 [24] and may override activation by

leucine when energy-status is low [25]. AMPK activation was

significantly higher in fasted mouse gastrocnemius muscle

compared to the fed state for both genotypes (Figure 8). There

was a significant increase in intramuscular AMPK activation in

MS-Slc7a5-KO compared to wild-type in both fasted and 10%

protein-fed mice (Figure 8), perhaps indicative of an increase in

metabolic stress under protein-scarce conditions. However, the

expression of Atf4 mRNA in gastrocnemius muscle, a more

specific indicator of low AA stress, was not affected either by

genotype or diet (Figure S7).

Discussion

We show that global knockout of Slc7a5 by Cre-mediated

excision of a region including exon1 from the Slc7a5 gene

results in an embryonic lethal phenotype in mice, although the

precise timing and cause are still under investigation. Mice

lacking the domain within SLC3A2 (CD98hc) that is required

for interaction with SLC7 light-chain permeases such as

SLC7A5 also do not survive early embryogenesis [26], which

may be partly due to a deleterious effect upon SLC7A5

transport function during post-implantation murine embryonic

development [27]. No Slc7a5 mutations associated with inherited

human diseases have been reported (perhaps unsurprising given

that the gene appears to be essential for mammalian embryonic

development), although some other members of the SLC7

family are linked with genetic disorders [7,28]. Slc7a5+/2 mice

display the anticipated ,50% reduction in Slc7a5 gene

expression but otherwise appear to have a normal anatomical

and physiological phenotype. Slc7a5 gene deletion is unlikely to

affect intestinal absorption or renal reabsorption of LNAA

because of the relatively low Slc7a5 expression in epithelial

tissues [7].

Muscle-specific knockout of the Slc7a5 gene (MS-Slc7a5-KO)

in mice results in substantial reductions of both Slc7a5 mRNA

expression and LNAA transport function in the skeletal muscles

studied. Skeletal muscle expresses both high-affinity and low-

affinity System L1 transporters for LNAA (SLC7A5 and

SLC7A8 respectively), in common with several other tissues

[7]. The low phenylalanine concentration (5 mM) used for our

in vitro transport studies disproportionately favours uptake by the

high-affinity SLC7A5 transporter over other LNAA transporters

expressed in muscle, so the reduction of muscle LNAA uptake

in vivo due to Slc7a5 knockout is likely to be less than the ,75%

reductions shown in Figures 2B, 3B and S1A. SLC7A8 mRNA

is upregulated in MS-Slc7a5-KO mouse muscle (Figure S1C),

therefore SLC7A8 may provide partial functional compensation

of the LNAA transport deficit due to absence of SLC7A5.

Nevertheless, our results (assuming that they are reflective of

changes in all skeletal muscles) imply that normal muscle size

concentration at time of tissue sampling (n = 9–10, **indicates p,0.01). (C), (D) Effect of 40 mg/g leucine injection on (C) intramuscular leucine
concentration and (D) Leu-induced mTORC1-S6K pathway activation at time of tissue sampling (10 min post-injection) in gastrocnemius muscle from
fasted wild-type and MS-Slc7a5-KO mice. Mean 6 SEM for n = 8–12 (WT) and 5–6 (MS-Slc7a5-KO) mice. Lower panel in (D) shows a representative
phospho-S6K blot. Both S6K phosphorylation and muscle leucine concentration are significantly increased following leucine injection in wild-type
(*and **indicate p,0.05 and p,0.01 respectively) but not MS-Slc7a5-KO animals. Activation of S6K by leucine (i.e. the difference between T389
phosphorylation in muscle from leucine - injected and vehicle (NaCl) – injected mice) appears to be blunted in MS-Slc7a5-KO muscle, Animals injected
with insulin were used as a positive control in (B) and the value of pS6K/S6K was set to 1 for the insulin injected animals.
doi:10.1371/journal.pone.0089547.g005
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Figure 6. Altered dietary protein intake affects plasma and intramuscular AA concentrations and mTORC1 pathway signalling in
MS-Slc7a5-KO mice. Mean 6 SEM for n = 6–10 (WT) and 3–5 (MS-Slc7a5-KO) male mice. (A) There were significant effects of dietary protein content

Muscle-Specific Slc7a5 KO Impairs mTOR Signalling

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89547



may be maintained in adult mice with a significantly diminished

LNAA influx, given that the gastrocnemius muscles of MS-

Slc7a5-KO mice are not significantly smaller than in wild-type

animals. Consistent with this viewpoint, the Slc7a8 (LAT2)

knockout mouse has no overt metabolic phenotype except for

neutral aminoaciduria [29].

Phenotypic differences between MS-Slc7a5-KO and wild-type

animals were only revealed when mice were nutritionally

challenged, either by fasting or maintenance on high/low

protein diets. MS-Slc7a5-KO mice do not maintain the

intramuscular leucine homeostasis achieved by wild-type mice

across the 10–30% dietary protein range. When extracellular

leucine availability is chronically restricted (e.g. on 10% protein

diet), MS-Slc7a5-KO muscles appear unable to maintain normal

concentrations of SLC7A5 substrates such as leucine and

isoleucine. LNAA uptake from the plasma through SLC7A5

may therefore become limiting as a source for the intramuscular

LNAA pool when dietary protein is scarce. In contrast, both

leucine and glutamine show accumulation in MS-Slc7a5-KO

skeletal muscle relative to wild-type on the 30% diet and acutely

in the fasted state. These latter observations hint at a perhaps

surprising additional role for SLC7A5 as a pathway for net

leucine and glutamine efflux from muscle in postabsorptive

stages of the dietary cycle. A dual role for SLC7A5 in both

taking up and releasing LNAA across the muscle plasma

membrane, depending upon dietary status, is consistent with the

reversible exchange mechanism of operation of this transporter.

The reduced ability of MS-Slc7a5-KO muscle to release

glutamine does not significantly impact on plasma glutamine

concentration in our dietary studies, consistent with the

conclusion that muscle glutamine synthesis is dispensable in

fed mice [30]. The increased intramuscular glutamine accumu-

lation in MS-Slc7a5-KO muscle on the high-protein diet may

reflect increased ammonia production from oxidation of other

amino acids. The increased retention of SLC7A5 substrates

(LNAA such as leucine and isoleucine) within MS-Slc7a5-KO

muscles seen during fasting and on the high-protein diet is

accompanied by elevated intramuscular concentrations of Small

Neutral AA (SNAA, including alanine and glycine) which are

not SLC7A5 substrates. This may occur because SNAA efflux

through SLC7A8 (LAT2) may be outcompeted (and/or influx

trans-stimulated) by the intracellular accumulation of LNAA.

Indeed, AA substrate affinities of both SLC7A5 and SLC7A8

are markedly asymmetrical at intracellular and extracellular

membrane faces, to the extent that the intracellular AA

substrate concentration would be expected to determine their

activity [31]. This type of competitive effect has been suggested

to account for some symptoms related to high tissue concen-

trations of leucine in children with branched-chain ketoacid

dehydrogenase deficiency (maple syrup urine disease) [32,33].

Leucine injection in fasted wild-type mice produces a

significant increase in intramuscular leucine concentration

coincident with a significant activation of the mTORC1 target

S6K. The exact mechanism by which leucine activates

mTORC1 signalling is still not fully resolved but both cytosolic

and lysosomal leucine-sensors have been described [1,2].

Leucine-induced activation of mTOR-S6K appears to be

blunted in MS-Slc7a5-KO gastrocnemius muscle, which is

consistent with the suggestion that availability of SLC7A5 to

rapidly replenish intracellular LNAA pool(s) after AA depletion

underlies one important aspect of AA signalling to mTORC1

[34]. On the other hand, we see no simple direct relationship

between intracellular leucine concentration and muscle

mTORC1 pathway activity for mice of either genotype when

comparing animals on 10, 20 and 30% protein diets: Wild-type

animals show a progressive increase in mTORC1-S6K activa-

tion at constant intramuscular leucine concentration, which

contrasts with the low level of mTORC1-S6K activation

despite an increased intramuscular leucine concentration in

MS-Slc7a5-KO mice. These relationships, which are the

cumulative effect of a long-term diet, differ from those seen

acutely after fasting. Whilst subcellular pooling of leucine (e.g.

into lysosomes) may partly account for differences in signalling

level, the results raise questions regarding the relative impor-

tance of LNAA concentration (as would be detected by a

classical receptor) and LNAA flux within muscle as monitored

variables for LNAA ‘‘sensors’’ upstream of the mTORC1

pathway. The close correlation between mTORC1 signalling

and plasma (rather than intramuscular) LNAA concentrations

resembles that reported in human skeletal muscle in response to

an essential AA load [35], which has been suggested to result

from signalling downstream of an extracellular essential AA

sensor monitoring rises in plasma AA such as leucine. Whilst

there is accumulating evidence for the existence of AA

transceptors in mammalian cell membranes [36], the results

may also be explained in terms of a change in essential AA flux

through cell-surface and intracellular sensing-signalling pathways

linked to mTORC1 activation in endolysosomes. Despite

substantial reductions in mTOR-S6K activation in muscles of

MS-Slc7a5-KO mice on high- or low-protein diets, the marginal

effects on muscle weight indicate that LNAA-generated anabolic

signals may not be critical for maintaining normal muscle mass,

at least in young adult mice. In fact inactivation of the mTOR

gene itself in mouse muscle does not initially reduce tissue

growth, although it does result in fatal structural abnormalities

in adult muscle types [37]. Our results with MS-Slc7a5-KO

mice do not fully inform on the role of SLC7A5 in early muscle

growth and development because the MCK-Cre transgene only

becomes activated in differentiated muscle tissue [22,38].

The progressive increase in insulin sensitivity observed for

wild-type mice between the 10% (low protein) diet and the 30%

(high protein) diet concurs with previous studies of rodents

receiving isoenergetic diets of differing protein contents (e.g. [39])

and those in which mice were provided leucine supplementation

to a high-fat diet [14,40,41] in amounts insufficient to reduce

food intake. Human studies have also shown that dietary

supplementation with branched-chain AA (BCAA, i.e. leucine,

isoleucine, valine) [42] or high-protein diet [43] may help

counteract pre-exising insulin-resistance. MS-Slc7a5-KO mice

appear to be slightly more insulin-resistant than controls under

(F (2, 27) = 4.97, p = .014) on gastrocnemius leucine concentration. Statistically-significant differences between groups were only detected for MS-
Slc7a5-KO animals on different protein diets (**D, p,0.01) as indicated. (B) There were significant effects of both genotype (F (1, 23) = 5.55, p = .027)
and dietary protein content (F (2, 23) = 4.49, p = .023) on plasma leucine concentration. Statistically-significant differences between genotype (***G,
p,0.001) and dietary protein (***D, p,0.001; wild-type only) groups are indicated. (C) Upper panel shows quantitation of S6K phosphorylation
normalised to effect of insulin injection (wild-type mouse on standard chow diet), lower panel shows representative western blot for phospho-S6K
and total S6K. Animals injected with NaCl and insulin were used as a negative and positive control, respectively. 2-way ANOVA shows significant
effects of both genotype (F (1, 27) = 9.61, p = .004) and dietary protein content (F (2, 27) = 4.97, p = .015) on S6K phosphorylation. Statistically-
significant differences between genotype (**G, p,0.01) and diet (**D, p,0.001; wild-type only) groups are indicated.
doi:10.1371/journal.pone.0089547.g006
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all dietary regimes (especially on the 30% protein diet). This

suggests a link between insulin signalling and the presence of

SLC7A5 in differentiated muscle tissue, perhaps related to the

influence of leucine/BCAA concentration and/or flux on the

underlying level of mTORC1 pathway activation. Knockout of

SLC6A19 (B0AT, the principal LNAA transporter in absorptive

epithelial cells) in mice similarly leads to dysregulated nutrient

signalling in tandem with reduced insulin responsiveness and

impaired body-weight control [44]. In contrast, the skeletal

muscles of BCATm-KO mice [45] (which have markedly-

elevated body-fluid BCAA concentrations because the principal

BCAA-catabolising enzyme in muscle is inactivated) exhibit an

elevated mTORC1 activation in skeletal muscle associated with

increases in protein turnover and basal energy expenditure

alongside an improvement in insulin-sensitivity, although

without any significant alteration of lean body mass [45]. The

improvement in insulin-sensitivity seen for mice on a high-fat

diet when given leucine-supplementation [40,41] is also linked

to increased basal energy expenditure. We did not measure

protein turnover (synthesis/degradation) or energy expenditure

of mice in the present study but, if we accept that reduced

mTORC1 pathway activation reflects reduced protein turnover,

then we might speculate that a concomitant reduction in basal

energy expenditure could be a contributing factor in the

development of insulin resistance in MS-Slc7a5-KO mice on a

high-protein diet.

The present study indicates that functional activity of the

SLC7A5 leucine transporter in skeletal muscle modulates LNAA-

dependent muscle mTOR-S6K signalling in mice. MS- Slc7a5-

KO does not compromise the maintenance of normal muscle mass

Figure 7. Altered dietary protein intake influences indices of
insulin-sensitivity in MS-Slc7a5-KO mice. (A) Representative results
of blood glucose concentration (mmol/L) in mice after intraperitoneal
glucose injection during glucose tolerance test (GTT) on mice fed a 30%
protein diet. (B) Quantitation of GTT responses presented as area-under-
curve (AUC) for glucose disposal. Mean 6 SEM for n = 5–7 (WT) and 4–5
(MS-Slc7a5-KO) male mice: 2-way ANOVA shows significant effects of
genotype (F (1, 24) = 8.62, p = .007) on AUC: Statistically-significant
differences between genotype (*, p,0.05) are indicated. (C) Gonadal
epididymal fat mass of male mice at time of tissue sampling. Mean 6
SEM for n = 6–7 (WT) and 4–5 (MS-Slc7a5-KO) mice. 2-way ANOVA
reveals a significant effect of genotype (F (1, 27) = 6.54, p = .016) on
gonadal fat mass, but the difference does not achieve p,0.05 at any
specific protein intake.
doi:10.1371/journal.pone.0089547.g007

Figure 8. Effect of altered dietary protein intake on AMPK
pathway activation in gastrocnemius muscle of MS-Slc7a5-KO
mice. Upper panel shows quantitation of all measurements (mean 6
SEM for n = 10–14 (WT) and 5–9 (MS-Slc7a5-KO) mice), lower panel
shows representative western blot for phospho-AMPK. 2-way ANOVA
shows significant effects of both genotype (F (1, 69) = 8.07, p = 0.006)
and dietary status (F (3, 69) = 43.8, p,0.0001) on AMPK phosphoryla-
tion. Statistically-significant differences between genotype are indicat-
ed (*, p,0.05). Fasted values for both genotypes are significantly
different from fed values, irrespective of dietary protein content.
doi:10.1371/journal.pone.0089547.g008
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in adult mice, although this may be at least partly due to functional

compensation by SLC7A8. SLC7A5 may also contribute to

modulation of baseline insulin-sensitivity in relation to amino

acid/protein nutrition, a possibility that could be further studied

by investigated of the metabolic rate of MS-Slc7a5-KO mice and

their responses to high-fat diet. Future study of a combined MS-

Slc7a5-KO/Slc7a8-KO mouse strain may also provide better

insight into the relationship between leucine transport, intracellu-

lar leucine concentration and mTORC1 pathway activation in

skeletal muscle.

Supporting Information

Figure S1 (A) Reduced phenylalanine transport function

(measured as Phe uptake) in MCK-Cre-Slc7a5+/2 and -

Slc7a52/2 mouse diaphragm muscle. Unpaired t-test shows

*p,0.05 compared with wild-type. (B) Confirmation of Cre-

mediated Slc7a5 gene excision in gastrocnemius muscle of MS-

Slc7a5-KO mice. Representative PCR analysis performed on

gastrocnemius muscle, using the 9–13 primer pair (59F-39R)

generates a product of 253 bp only with the recombined Slc7a5

gene lacking the 1855 bp floxed region including exon1. PCR

analysis using the 18–19 primer pair (Cre) identifies presence of

the Cre recombinase gene. (C) Increased expression of Slc7a8

(LAT2) mRNA in MS-Slc7a5-KO mouse gastrocnemius muscle

(n = 17) compared to wild-type (n = 22). **indicates p,0.01 by

unpaired t-test.

(TIF)

Figure S2 Effect of 8 h overnight fast on muscle and
plasma amino acid concentrations in MS-Slc7a5-KO
mice. (A) Intramuscular concentrations of several neutral AA

are significantly lower after 8 h fast in WT animals (n = 8)

compared to MS-Slc7a5-KO animals (n = 5) (*and ***indicate p,

0.05 and p,0.001 respectively by unpaired t-test) (B) Plasma AA

concentrations after 8 h fast are broadly similar for wild-type and

MS-Slc7a5-KO mice (*indicates p,0.05 for glycine only).

(TIF)

Figure S3 Effect of altered dietary protein intake on
growth rate and muscle mass in MS-Slc7a5-KO mice.
Mean value 6 SEM for n = 6–7 (WT) and 4–5 (MS-Slc7a5-KO)

male mice. (A) Shows the growth rate calculated between days 60

and 80 of age. (b,c) Show the ratio between organ (gastrocnemius

(B) and heart (C)) and body weight. No significant effects were

detected by 2-way ANOVA.

(TIF)

Figure S4 Effect of altered dietary protein intake on
muscle and plasma concentrations of isoleucine and
glutamine in MS-Slc7a5-KO mice. Mean 6 SEM for n = 6–

10 (WT) and 3–5 (MS-Slc7a5-KO) male mice. (A) There were

significant effects of dietary protein content (F (2, 27) = 6.23,

p = .006) on gastrocnemius isoleucine concentration. Statistically-

significant differences between groups were only detected for MS-

Slc7a5-KO animals on different protein diets (D**, p,0.01) as

indicated. There were significant effects of genotype (F (1,

30) = 5.62, p = .024) on gastrocnemius glutamine concentration

with statistically-significant differences between groups (**, p,

0.01) as indicated. (B) There were significant effects of both

genotype (F (1, 23) = 7.43, p = .012) and dietary protein content (F

(2, 23) = 9.82, p,0.001) on plasma isoleucine concentration.

Statistically-significant differences between genotype (G*, p,

0.05) and dietary protein (D**, p,0.01; D***, p,0.001; wild-

type only) groups are indicated. No significant effects on plasma

glutamine concentration were detected by 2-way ANOVA.

(TIF)

Figure S5 Effect of altered dietary protein intake on
mTORC1 pathway signalling in MS-Slc7a5-KO mice. (A)

Quantitation of S6K phosphorylation in gastrocnemius muscle

normalised to effect of insulin injection for mice of both genders. 2-

way ANOVA shows significant effects of both genotype (F (1,

54) = 4.76, p = .033) and dietary protein content (F (2, 54) = 4.50,

p = .016) on S6K phosphorylation. Statistically-significant differ-

ences between genotype (G**, p,0.01) and protein diet (D*, p,

0.05; D**, p,0.01; wild-type only) groups are indicated. (B)

Quantitation of S6K phosphorylation in soleus muscle normalised

to effect of insulin injection for male mice (mean 6 SEM for

n = 6–7 (WT) and 4–5 (MS-Slc7a5-KO) mice. 2-way ANOVA

shows significant effects of both genotype (F (1, 27) = 16.7, p = ,

.0001) and dietary protein content (F (2, 27) = 8.02, p = .002) on

S6K phosphorylation. Statistically-significant differences between

genotype (G*, p,0.05, G**, p,0.01) are indicated.

(TIF)

Figure S6 Plasma insulin concentration in MS-Slc7a5-
KO mice. (A) Plasma insulin concentrations in mice on 10, 20

and 30% protein diets at time of tissue sampling (fed state). (B)

HOMAR-IR values for wild-type (n = 33) and MS-Slc7a5-KO

(n = 12) mice after 8 h fast. Mean value 6 SEM for n = 6–7 (WT)

and 4–5 (MS-Slc7a5-KO) male mice. No significant effects were

detected by 2-way ANOVA. (C) Quantitation of Akt phosphor-

ylation in soleus muscle for male mice on 10, 20 and 30% protein

diets.

(TIF)

Figure S7 Effect of altered dietary protein intake on
ATF4 mRNA expression in gastrocnemius muscle of MS-
Slc7a5-KO mice. Mean 6 SEM for n = 6–11 (WT) and 4–5

(MS-Slc7a5-KO) male mice. 2-way ANOVA detected no signifi-

cant effects of either genotype or dietary status on ATF4 mRNA

levels.

(TIF)

Table S1 Amino acid concentrations in tissues from
heterozygous Bal1-Cre SLC7A5 knockout mice. No

significant differences were detected by unpaired t-test.
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Muscle-Specific Insulin Receptor Knockout Exhibits Features of the Metabolic

Syndrome of NIDDM without Altering Glucose Tolerance. Molecular Cell 2:
559–569.

23. Takabe W, Kanai Y, Chairoungdua A, Shibata N, Toi S, et al. (2004)
Lysophosphatidylcholine Enhances Cytokine Production of Endothelial Cells via

Induction of L-Type Amino Acid Transporter 1 and Cell Surface Antigen 4F2.

Arteriosclerosis, Thrombosis, and Vascular Biology 24: 1640–1645.

24. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor

that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: 251–262.
25. Wilson GJ, Layman DK, Moulton CJ, Norton LE, Anthony TG, et al. (2011)

Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphor-
ylation and extends postprandial muscle protein synthesis in rats. American

Journal of Physiology - Endocrinology And Metabolism 301: E1236–E1242.

26. Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, et al. (2003) The targeted
disruption of the CD98 gene results in embryonic lethality. Biochemical and

Biophysical Research Communications 308: 847–851.
27. Sato Y, Heimeier RA, Li C, Deng C, Shi YB (2011) Extracellular domain of

CD98hc is required for early murine development. Cell & bioscience 1: 7.

28. Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, et al. (1999)
Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein

intolerance gene. Nat Genet 21: 293–296.
29. Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, et al. (2011)

Aminoaciduria, but normal thyroid hormone levels and signalling, in mice
lacking the amino acid and thyroid hormone transporter Slc7a8. Biochemical

Journal 439: 249–255.

30. He Y, Hakvoort TB, Kohler SE, Vermeulen JL, de Waart DR, et al. (2010)
Glutamine synthetase in muscle is required for glutamine production during

fasting and extrahepatic ammonia detoxification. The Journal of biological
chemistry 285: 9516–9524.

31. Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L

heterodimeric amino acid exchangers by intracellular substrates. The EMBO
journal 21: 580–589.

32. Christensen HN (1990) Role of amino acid transport and countertransport in
nutrition and metabolism. Physiol Rev 70: 43–77.

33. Strauss KA, Wardley B, Robinson D, Hendrickson C, Rider NL, et al. (2010)
Classical maple syrup urine disease and brain development: principles of

management and formula design. Molecular Genetics and Metabolism 99: 333–

345.
34. Schriever SC, Deutsch MJ, Adamski J, Roscher AA, Ensenauer R (2012)

Cellular signaling of amino acids towards mTORC1 activation in impaired
human leucine catabolism. The Journal of Nutritional Biochemistry.

35. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, et al. (2005) Anabolic

signaling deficits underlie amino acid resistance of wasting, aging muscle. Faseb J
19: 422–424.

36. Hundal HS, Taylor PM (2009) Amino Acid Transceptors: Gate Keepers Of
Nutrient Exchange And Regulators Of Nutrient Signaling. Am J Physiol

Endocrinol Metab 296: E603–E613.
37. Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, et al. (2009) Muscle

inactivation of mTOR causes metabolic and dystrophin defects leading to severe

myopathy. The Journal of cell biology 187: 859–874.
38. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, et al. (2005)

Requirement for serum response factor for skeletal muscle growth and
maturation revealed by tissue-specific gene deletion in mice. Proceedings of

the National Academy of Sciences of the United States of America 102: 1082–

1087.
39. Blouet C, Mariotti F, Azzout-Marniche D, Bos C, Mathé V, et al. (2006) The
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