90 research outputs found

    Motility defects in Campylobacter jejuni defined gene deletion mutants caused by second-site mutations.

    Get PDF
    Genetic variation due to mutation and phase variation has a considerable impact on the commensal and pathogenic behaviours of Campylobacter jejuni. In this study, we provide an example of how second-site mutations can interfere with gene function analysis in C. jejuni. Deletion of the flagellin B gene (flaB) in C. jejuni M1 resulted in mutant clones with inconsistent motility phenotypes. From the flaB mutant clones picked for further analysis, two were motile, one showed intermediate motility and two displayed severely attenuated motility. To determine the molecular basis of this differential motility, a genome resequencing approach was used. Second-site mutations were identified in the severely attenuated and intermediate motility flaB mutant clones: a TA-dinucleotide deletion in fliW and an A deletion in flgD, respectively. Restoration of WT fliW, using a newly developed genetic complementation system, confirmed that the second-site fliW mutation caused the motility defect as opposed to the primary deletion of flaB. This study highlights the importance of (i) screening multiple defined gene deletion mutant clones, (ii) genetic complementation of the gene deletion and ideally (iii) screening for second-site mutations that might interfere with the pathways/mechanisms under study.This work was funded by BBSRC grant RG66581.This is the final version of the article. It was first available from Society for General Microbiology via http://dx.doi.org/10.1099/mic.0.00018

    Hydrogen Sulfide Is a Novel Protector of the Retinal Glycocalyx and Endothelial Permeability Barrier

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The original contributions presented in the study are included in the article/supplementary material. The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.Significantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (H2S) are observed in diabetic patients and correlate with microvascular dysfunction. H2S may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that H2S could prevent or treat retinal microvascular endothelial dysfunction in diabetes. Bovine retinal endothelial cells (BRECs) were exposed to normal (NG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) ± the slow-release H2S donor NaGYY4137 in vitro. Glycocalyx coverage (stained with WGA-FITC) and calcein-labeled monocyte adherence were measured. In vivo, fundus fluorescein angiography (FFA) was performed in normal and streptozotocin-induced (STZ) diabetic rats. Animals received intraocular injection of NaGYY4137 (1 μM) or the mitochondrial-targeted H2S donor AP39 (100 nM) simultaneously with STZ (prevention) or on day 6 after STZ (treatment), and the ratio of interstitial to vascular fluorescence was used to estimate apparent permeability. NaGYY4137 prevented HG-induced loss of BREC glycocalyx, increased monocyte binding to BRECs (p ≤ 0.001), and increased overall glycocalyx coverage (p ≤ 0.001). In rats, the STZ-induced increase in apparent retinal vascular permeability (p ≤ 0.01) was significantly prevented by pre-treatment with NaGYY4137 and AP39 (p < 0.05) and stabilized by their post-STZ administration. NaGYY4137 also reduced the number of acellular capillaries (collagen IV + /IB4-) in the diabetic retina in both groups (p ≤ 0.05). We conclude that NaGYY4137 and AP39 protected the retinal glycocalyx and endothelial permeability barrier from diabetes-associated loss of integrity and reduced the progression of diabetic retinopathy (DR). Hydrogen sulfide donors that target the glycocalyx may therefore be a therapeutic candidate for DR.Medical Research Council (MRC)British Heart FoundationRoyal SocietyBrian Ridge ScholarshipNational Eye Research CentreMasonic Charitable Foundatio

    Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer

    Get PDF
    The extracellular matrix (ECM) is a network of secreted proteins that, beyond providing support for tissues and organs, is involved in the regulation of a variety of cell functions, including cell proliferation, polarity, migration and oncogenic transformation. ECM homeostasis is maintained through a tightly controlled balance between synthesis, deposition and degradation. While the role of metalloproteases in ECM degradation is widely recognised, the contribution of ECM internalisation and intracellular degradation to ECM maintenance has been mostly overlooked. In this review, I will summarise what is known about the molecular mechanisms mediating ECM endocytosis and how this process impacts on diseases, such as fibrosis and cancer

    EFFICACY OF INTRAVITREAL AFLIBERCEPT IN MACULAR TELANGIECTASIA TYPE 1 IS LINKED TO THE OCULAR ANGIOGENIC PROFILE.

    Get PDF
    To evaluate intravitreal aflibercept in macular telangiectasia Type 1 (MacTel 1) patients and measure their ocular angiogenic profile. Eight subjects with MacTel 1 refractory to bevacizumab, ranibizumab, or laser therapy and switched to aflibercept were included. Best-corrected visual acuity, central macular thickness, and cystic areas quantified on optical coherence tomography B-scans were assessed during 12 months. Perifoveal capillary densities were measured on optical coherence tomography angiography. Aqueous humor was sampled from six patients and eight control subjects undergoing cataract extraction. Growth factors were quantified using a multiarray immunoassay. Over 12 months, patients received 6.6 ± 1.4 (range, 5-8) intravitreal aflibercept injections. Twelve months after switching to aflibercept, best-corrected visual acuity increased by ≥5 letters in 5 of 8 patients, compared with preaflibercept levels. Mean best-corrected visual acuity improved from 79.6 (∼20/50) to 88.0 (∼20/35) Early Treatment Diabetic Retinopathy Study letters (P = 0.042), and central macular thickness decreased from 434 ± 98 μm to 293 ± 59 μm (P = 0.014). Compared with control subjects, the profile of angiogenic factors in MacTel 1 eyes revealed no difference in vascular endothelial growth factor-A levels but significantly higher levels of placental growth factor (P = 0.029), soluble vascular endothelial growth factor receptor-1 (sFlt-1; P = 0.013), vascular endothelial growth factor-D (P = 0.050), and Tie-2 (P = 0.019). Placental growth factor levels inversely correlated with both superficial and deep capillary plexus densities on optical coherence tomography angiography (P = 0.03). The clinical response to aflibercept coupled to the angiogenic profile of MacTel 1 eyes support the implication of the placental growth factor/Flt-1 pathway in MacTel 1

    3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration

    Get PDF
    Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. bPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-bPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity

    Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models.

    Get PDF
    Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.This work was funded by Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk) grant BB/K004514/1. D.P.W. was funded by a Wellcome Trust (https://wellcome.ac.uk) Infection and Immunity PhD rotation studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore