357 research outputs found

    Topological Correlations in a Layer Adsorbed on a Crystal Surface

    Get PDF
    The incoherent scattering of electrons by a layer adsorbed at a single crystal surface is determined by the topological correlations of elements forming the adsorbed layer. The model for the description of atoms or molecules adsorbed on the surface is formulated in terms of occupation operators which are expressed in terms of pseudospin operators with a given spin value. The correlations can be determined by the fluctuation dissipation theorem in connection with the susceptibility or given directly by means of the Green functions properly chosen. An example of the topological or chemical disorder of two components is considered in detail. The calculations of the topological correlations allow us to find the incoherent scattering amplitude as a function of the surface coverage which can be experimentally detected.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Ɓódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Ɓódzki” nr 885/P-DUN/2014 zostaƂo dofinansowane ze ƛrodków MNiSW w ramach dziaƂalnoƛci upowszechniającej naukę

    Calculations of giant magnetoresistance in Fe/Cr trilayers using layer potentials determined from {\it ab-initio} methods

    Full text link
    The ab initio full-potential linearized augmented plane-wave method explicitly designed for the slab geometry was employed to elucidate the physical origin of the layer potentials for the trilayers nFe/3Cr/nFe(001), where n is the number of Fe monolayers. The thickness of the transition-metal ferromagnet has been ranged from n=1n=1 up to n=8 while the spacer thickness was fixed to 3 monolayers. The calculated potentials were inserted in the Fuchs-Sondheimer formalism in order to calculate the giant magnetoresistance (GMR) ratio. The predicted GMR ratio was compared with the experiment and the oscillatory behavior of the GMR as a function of the ferromagnetic layer thickness was discussed in the context of the layer potentials. The reported results confirm that the interface monolayers play a dominant role in the intrinsic GMR.Comment: 17 pages, 7 figures, 3 tables. accepted in J. Phys.: Cond. Matte

    Modification of the Two-Point Scaling Theory for the Description of the Phase Transition in Solution. Analysis of Sodium Octanoate Aqueous Solutions

    Get PDF
    On the basis of conventional scaling theory, the two-point scaling theory was modified in order to describe the influence of composition on the partial molar heat capacity and volume during the micellization process. To verify the theory, isobaric heat capacities and densities of aqueous sodium octanoate solutions were measured over wide composition and temperature ranges and the modified approach was used to analyze the calculated partial molar heat capacities and volumes of the surfactant in water. The results obtained indicate that the micellization process is subject to the scaling laws. The results were compared with those for other systems. Peculiar behavior of the critical indices was observed and correlated with the structure of the micelles

    Transport of Cytoplasmically Synthesized Proteins into the Mitochondria in a Cell Free System from Neurospora crassa

    Get PDF
    Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells. Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria. The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c. Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins. In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles. The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria

    Hormone affinity and fibril formation of piscine transthyretin: the role of the N-terminal

    Get PDF
    Transthyretin (TTR) transports thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3) in the blood of vertebrates. TH-binding sites are highly conserved in vertebrate TTR however, piscine TTR has a longer N-terminus which is thought to influence TH-binding affinity and may influence TTR stability. We produced recombinant wild-type sea bream TTR (sbTTRWT) plus two mutants in which six (sbTTRM6) and twelve (sbTTRM12) N-terminal residues were removed. Ligandbinding studies revealed similar affinities for T3 (Kd=10.6±1.7nM) and T4 (Kd=9.8±0.97nM) binding to sbTTRWT. Affinity for THs was unaltered in sbTTRM12 but sbTTRM6 had poorer affinity for T4 (Kd=252.3±15.8nM) implying that some residues in the N-terminus can influence T4 binding. sbTTRM6 inhibited acid-mediated fibril formation in vitro as shown by fluorometric measurements using thioflavine-T.In contrast, fibril formation by sbTTRM12 was significant, probably due to decreased stability of the tetramer. Such studies also suggested that sbTTRWT is more resistant to fibril formation than human TTR

    Underground tales, overground lives: mobile work identities through to post-retirement

    Get PDF
    Although there has been recent attention given to the subject of mobile work, there has been less focus, within mobility studies, on the work of those who enable movement: the job of the transport worker. This article takes this incarnation of mobile workers as the basis for understanding the ways in which mobile work identities are pulled through into retirement. The article firstly proposes that transport workers, as movement enablers, have particular identities, and are an important and neglected topic of study within mobilities. Secondly, it suggests that the post-work identities of mobile workers are contingent on their experiences during their working lives and that these are particular to mobile work. The article is evidenced through data gathered during a mobile ethnographic study with two retired London Underground employees. The participants joined the researchers on a walking tour of a disused underground railway station in London, ‘Hidden London’, organised by the London Transport Museum and their experiences and emotional responses were recorded and analysed. Understanding post-work identities through the embodied and spatial experiences of the present, the research sought insights of the past and future; the continuity and fluidity of working identities that permeated through to post-work lives. This article argues that mobile work identities are specific identities that shape a distinct post-retirement identity

    Environmental contaminants as etiologic factors for diabetes.

    Get PDF
    For both type 1 and type 2 diabetes mellitus, the rates have been increasing in the United States and elsewhere; rates vary widely by country, and genetic factors account for less than half of new cases. These observations suggest environmental factors cause both type 1 and type 2 diabetes. Occupational exposures have been associated with increased risk of diabetes. In addition, recent data suggest that toxic substances in the environment, other than infectious agents or exposures that stimulate an immune response, are associated with the occurrence of these diseases. We reviewed the epidemiologic data that addressed whether environmental contaminants might cause type 1 or type 2 diabetes. For type 1 diabetes, higher intake of nitrates, nitrites, and N-nitroso compounds, as well as higher serum levels of polychlorinated biphenyls have been associated with increased risk. Overall, however, the data were limited or inconsistent. With respect to type 2 diabetes, data on arsenic and 2,3,7,8-tetrachlorodibenzo-p-dioxin relative to risk were suggestive of a direct association but were inconclusive. The occupational data suggested that more data on exposure to N-nitroso compounds, arsenic, dioxins, talc, and straight oil machining fluids in relation to diabetes would be useful. Although environmental factors other than contaminants may account for the majority of type 1 and type 2 diabetes, the etiologic role of several contaminants and occupational exposures deserves further study

    A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations

    Full text link
    A major goal of modern computational biology is to simulate the collective behaviour of large cell populations starting from the intricate web of molecular interactions occurring at the microscopic level. In this paper we describe a simplified model of cell metabolism, growth and proliferation, suitable for inclusion in a multicell simulator, now under development (Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the proliferation dynamics of tumor cells which adapt their behaviour to respond to changes in the biochemical composition of the environment. This modeling of nutrient metabolism and cell cycle at a mesoscopic scale level leads to a continuous flow of information between the two disparate spatiotemporal scales of molecular and cellular dynamics that can be simulated with modern computers and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl

    Optimal Control for Multi-mode Systems with Discrete Costs

    Get PDF
    This paper studies optimal time-bounded control in multi-mode systems with discrete costs. Multi-mode systems are an important subclass of linear hybrid systems, in which there are no guards on transitions and all invariants are global. Each state has a continuous cost attached to it, which is linear in the sojourn time, while a discrete cost is attached to each transition taken. We show that an optimal control for this model can be computed in NEXPTIME and approximated in PSPACE. We also show that the one-dimensional case is simpler: although the problem is NP-complete (and in LOGSPACE for an infinite time horizon), we develop an FPTAS for finding an approximate solution.Comment: extended version of a FORMATS 2017 pape

    An amphitropic cAMP-binding protein in yeast mitochondria

    Get PDF
    ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)
    • 

    corecore