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Abstract. This paper studies optimal time-bounded control in multi-mode sys-
tems with discrete costs. Multi-mode systems are an important subclass of linear
hybrid systems, in which there are no guards on transitions and all invariants are
global. Each state has a continuous cost attached to it, which is linear in the sojourn
time, while a discrete cost is attached to each transition taken. We show that an
optimal control for this model can be computed in NEXPTIME and approximated
in PSPACE. We also show that the one-dimensional case is simpler: although the
problem is NP-complete (and in LOGSPACE for an infinite time horizon), we
develop an FPTAS for finding an approximate solution.

1 Introduction
Multi-mode systems [8] are an important subclass of linear hybrid systems [4], which
consist of multiple continuous variables and global invariants for the values that each
variable is allowed to take during a run of the system. However, unlike for the full linear
hybrid systems model, multi-mode systems have no guards on transitions and no local
invariants. In this paper, we study multi-mode systems with discrete costs, which extend
linear hybrid systems by adding both continuous and discrete costs to states. Every time
a transition is taken (i.e. when the current state changes), the discrete cost assigned to
the target state is incurred. The continuous cost is the sum of the products of the sojourn
time in each state and the cost assigned to this state. Our aim is to minimise the total cost
over a finite-time horizon or a long-time average cost over an infinite time horizon. We
exemplify this by applying this model to the optimal control of heating, ventilation, and
air-conditioning (HVAC) systems. HVAC systems account for about 50% of the total
energy cost in buildings [27], so a lot of energy can be saved by optimising their control.
Many simulation programs have been developed to analyse the influence of control on
the performance of HVAC system components such as TRNSYS [3], EnergyPlus [1], and
the Matlab’s IBPT [2]. Our approach has the advantage over the existing control theory
techniques that it provides approximation guarantees. Although the actual dynamics of a
HVAC system is governed by linear differential equations, one can argue [24,25,22] that
constant rate dynamic, as in our model, can approximate well such a behaviour.

The simplest subclass of our model is multi-mode systems with a single dimension. It
naturally occurs when controlling the temperature in a single room or building to stay in
a pleasant range. For this, the system can be in different modes, e.g. the air-conditioning
can be switched on or off, or one can choose to switch on an electrical radiator or a gas
burner. Each such a configuration can be modelled as mode of our multi-mode system.
Modes have start-up cost (gas burners, e.g. may suffer some wear and tear when switched
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on) as well as continuous costs.
When keeping an office building in a pleasant temperature range during opening

hours, we face a control problem for multi-mode systems with a finite time horizon. We
show that finding an optimal schedule in such a case is NP-complete and significantly
more challenging than for the infinite time horizon (LogSPACE). However, we devise an
FPTAS for the finite time horizon problem.

Heating multiple rooms simultaneously can be naturally modelled by multi-mode
systems (with multiple dimensions). In such a scenario, we might have different pleasant
temperature ranges in different rooms and the temperatures of the individual rooms may
influence each other. Naturally, controlling a multi-dimensional multi-mode systems is
more complex than controlling a one-dimensional multi-mode system. We develop a non-
deterministic exponential time algorithm for the construction of optimal control, whose
complexity is only driven by potentially required high precision in exponentially many
mode switches. Allowing for an ε-deviation from the ranges of pleasant temperatures
reduces the complexity to PSPACE.
Related work. Our model can be viewed as a weighted extension of the linear hybrid
automata model ([5,17]), but with global constraints only. Even basic questions for the
general linear hybrid automata model are undecidable already for three variables and
not known to be decidable for two variables [9]. Most of the research for this model
has focused on qualitative objectives such as reachability. Various subclasses of hybrid
systems with a decidable reachability problem were considered, see e.g. [9] for an
overview. In particular, reachability in linear hybrid systems, where the derivative of
each variable in each state is constant, can be shown to be decidable for one continuous
variable by using the techniques from [19]. In [6], it has been shown that reachability is
decidable for timed automata, which are a particular subclass of hybrid automata where
the slope of all variables is equal to 1.

In [22] we only studied the one-dimensional case of our model with the simplifying
assumption that there is exactly one mode that can bring the temperature down and
it is cost-free. In this paper, we drop this assumption and generalise the model to
multiple dimensions. In the one-dimensional setting, we manage to prove similar nice
algorithmic properties as in [22], i.e. the existence of finitely many patterns for optimal
schedules, polynomial constant-factor approximation algorithm and an FPTAS. However,
as opposed to the existence of a unique pattern for an optimal schedule in [22], we show
that that there can be 44 different patterns when the simplifying assumption is dropped.
To show this, we need to devise five safety-preserving and cost-non-increasing operations
on schedules, while in [22] it sufficed for each mode to just lump together all timed
actions that use this mode. Also, our constant-factor approximation algorithm requires
a careful analysis of the interplay between different sections of the normal form for
schedules, which results in anO(n7) algorithm, while in [22] it sufficed to use one mode
all the time and the algorithm ran in linear time.

Multi-mode systems were studied in [8], but with no discrete costs and with infinite
time horizons only. They were later extended in [7] to a setting where the rate of
change of each variable in a mode belonging to an interval instead of being constant.
[28] studied a hybrid automaton model where the dynamics are governed by linear
differential equations, but again without switching costs and only with an infinite time
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horizon. Both of these papers show that, for any number of variables, a schedule with
the optimal long-time average cost can be computed in polynomial time. In [24,25], the
same models without switching costs have been studied over the infinite time horizon,
with the objective of minimising the peak cost, rather than the long-time average cost.
In [11], long-time average and total cost games have been shown to be decidable for
hybrid automata with strong resets, in which all variables are reset to 0 after each discrete
transition. The long-time average and total cost optimisation for the weighted timed
automata model have been shown to be PSPACE-complete (see e.g. [10] for an overview).

There are many practical approaches to the reduction of energy consumption and
peak demand in buildings. One particularly popular one is model predictive control
(MPC) [12]. In [26], stochastic MPC was used to minimise the energy consumption
in a building. In [21], On-Off optimal control was considered for air conditioning and
refrigeration. The drawback of using MPC is its high computational complexity and the
fact that it cannot provide any worst-case guarantees. UPPAAL Stratego [15] supports
the analysis of the expected cost in linear hybrid systems, but uses a stochastic semantics
of these models [16,14]. I.e. a control strategy induces a stochastic model where the
time delay in each state is uniformly or exponentially distributed. This is different to the
standard nondeterministic interpretation of the model, which we use in this paper. In
[20], an on-line controller synthesis combined with machine learning and compositional
synthesis techniques was applied for optimal control of a floor heating system.

Structure of the paper. The paper is organised as follows. We introduce all necessary
notation and formally define the model in Section 2. In Section 3, we study the computa-
tional complexity of limit-safe and ε-safe control in multiple dimensions. In Section 4,
we show that in one dimension every schedule can be transformed without increasing its
cost into a schedule following one of 44 different patterns. In Section 5, we show that the
cost optimisation decision problem in one-dimension with infinite and finite horizon is
LOGSPACE and NP-complete, respectively. In Section 6, still for the one-dimension case,
we first show a constant factor approximation algorithm and, building on it, develop an
FPTAS by a reduction to the 0-1 knapsack problem. Due to the space constraints, some
of the proofs and algorithms are only available in the extended version of this paper [23].

2 Preliminaries
Let 0N and 1N be N -dimensional vectors with all entries equal to 0 and 1, respectively.
By R≥0 and Q≥0 we denote the sets of all non-negative real and rational numbers,
respectively. We assume that 0 · ∞ =∞ · 0 = 0. For a vector v, let ‖v‖ be its∞-norm
(i.e. the maximum coordinate in v). We write v1 ≤ v2 if every coordinate vector of vector
v1 is smaller than or equal to the corresponding coordinate in vector v2, and v1 < v2 if,
additionally, v1 6= v2 holds.

2.1 Formal Definition of Multi-Mode Systems

Motivated by our application of keeping temperature in multiple rooms within com-
fortable range, we restrict ourselves to safe sets being hyperrectangles, which can be
specified by giving its two extreme corner points. A multi-mode system with discrete
costs, A, henceforth referred to simply as multi-mode system, is formally defined as a
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tuple A = (M,N,A, πc, πd, Vmin, Vmax, V0) where:

– M is a finite set of modes;
– N ≥ 1 is the number of continuous variables in the system;
– A :M → QN is the slope of all the variables in a given mode;
– πc :M → Q≥0 is the cost per time unit spent in a given mode;
– πd :M → Q≥0 is the cost of switching to a given mode;
– Vmin, Vmax ∈ QN : Vmin < Vmax, define the safe set, S, as follows {x ∈ RN : Vmin ≤
x ≤ Vmax};

– V0 ∈ QN , such that V0 ∈ S, defines the initial value of all the variables.

2.2 Schedules, their cost and safety

A timed action is a pair (m, t) ∈ M × R≥0 of a mode m and time delay t > 0. A
schedule σ (of length k) with time horizon tmax is a finite sequence of timed actions
σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that

∑k
i=1 ti = tmax. A schedule σ with

infinite time horizon is either an infinite sequence of timed actions σ = 〈(m1, t1), (m2,
t2), . . . , (mk, tk), . . .〉, such that

∑∞
i=1 ti = ∞ or a finite sequence of timed actions

σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that tk =∞. The run of a finite schedule
σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is a sequence of states run(σ) = 〈V0, V1, ...,
Vk〉 such that, for all 0 ≤ i ≤ k − 1, we have that Vi+1 = Vi + tiA(mi).

A schedule and its run are called safe if Vmin ≤ Vi ≤ Vmax holds for all 1 ≤ i ≤ k.
A schedule and its run are called ε-safe if Vmin − ε · 1N < Vi < Vmax + ε · 1N holds
for all 1 ≤ i ≤ k. The run of an infinite schedule and its safety and ε-safety are defined
accordingly.

The total cost of a schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with a finite
time horizon is defined as π(σ) =

∑k
i=1 πd(mi) + πc(mi)ti. The limit-average cost for

a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 with an infinite time horizon is
defined as πavg(σ) = πc(mk) and for an infinite schedule σ = 〈(m1, t1), (m2, t2), . . .〉
it is defined as

πavg(σ) = lim sup
k→∞

(
k∑
i=1

πd(mi) + πc(mi)ti

)/ k∑
i=1

ti

A safe finite schedule σ is ε-optimal if, for all safe finite schedules σ′, we have that
π(σ′) ≥ π(σ) − ε. A safe finite schedule is optimal if it is 0-optimal. A safe infinite
schedule σ is optimal if, for all safe infinite schedules σ′, we have that πavg(σ′) ≥
πavg(σ).

The following example shows that there may not be an optimal schedule for a
multi-mode system with a finite time horizon.

Example 1. Consider a multi-mode system with three modes: M1,M2,M3. The slope
vectors in these modes are A(M1) = (1, 1), A(M2) = (1,−1) and A(M3) = (−1, 1),
respectively. The continuous cost of using M1 is πc(M1) = 1 and all the other costs
are 0. Let V0 = Vmin = 02 and Vmax = 12. Notice that we can only use M2 or M3 once
we get out of the initial corner V0. This can only be done using M1. Now let the time
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horizon be tmax. Note that the following schedule σε = (M1, ε),
(
(M2, t), (M3, t)

)l
,

where t′ = tmax− ε, l = dt′/εe, and t = t′/2l, has time horizon tmax and total cost ε > 0.
As ε can be made arbitrarily small but has to be > 0, σε is an ε-optimal schedule for all
ε > 0, but no optimal schedule exists.

Note that in Example 1, for any ε > 0, there exists an optimal ε-safe schedule σ with
total cost 0: σ0 = 〈

(
(M2, t), (M3, t)

)l〉 where l is defined as in Example 1. Our aim
is to find an “abstract schedule” that, for any given ε > 0, can be used to construct in
polynomial time an ε-safe ε-optimal schedule.

Let M∗ = {m ∈ M | πd(m) = 0} be the subset of modes without discrete costs.
Note that, as shown in [8], the cost and safety of a schedule withM∗ modes only, depends
only on the total amount of time spent in each of the M∗ modes. We therefore lump
together any sequence of timed actions that only use M∗ modes and define an abstract
timed action (over M∗) as a function t : M∗ → R≥0. A finite abstract schedule with
time horizon tmax (of length k) is a finite sequence τ = 〈t1, (m1, t1), t2, (m2, t2), . . . ,
(mk−1, tk−1), tk〉 such that ∀i mi ∈M \M∗ and

∑
i≤k,m∈M∗ ti(m)+

∑
i<k ti = tmax.

The run of the abstract schedule τ is a sequence 〈V0, V1, . . . , V2k+1〉 such that, for all
i ≤ k, we have V2i = V2i−1 + A(mi)ti and V2i+1 = V2i +

∑
m∈M∗ A(m)ti(m). We

say that an abstract schedule is limit-safe if its run is safe. The total cost of an abstract
schedule τ is defined as∑

i≤k,m∈M∗
πc(m, ti(m)) +

∑
i<k

(
πd(mi) + πc(mi)ti

)
.

Note that any safe schedule can be turned into a limit-safe abstract schedule with the
same cost by simply replacing any maximal subsequence of consecutive timed actions
that only use M∗ modes by a single abstract timed action. A limit-safe abstract schedule
σ is optimal if the total cost of all other limit-safe abstract schedules is higher than π(σ).
The following statement justifies the name “limit-safe”.

Proposition 1. Given a limit-safe abstract schedule τ and ε > 0, we can construct in
polynomial time an ε-safe schedule σ such that π(τ) = π(σ).

Proof. Let M∗ = {m1,m2, . . . ,mj}. To obtain σ from τ , we replace each abstract
timed action

{(
m, tm) | m ∈M∗

}
by a sequence

(
(m1, tm1/l), . . . , (mj , tmj/l)

)l
for

a sufficiently large l ∈ N.
Sufficiently large means that, for t∗ =

∑
m∈M∗ tm, l > t∗ ·maxm∈M∗ ‖A(m)‖/ε.

This choice guarantees that
∑
m∈M∗ ‖A(m)‖ · tm/l < ε. Thus, when the abstract action{(

m, tm) | m ∈M∗
}

joins two states V2i, V2i+1 along the run 〈V0, V1, . . . , . . . , V2k+1〉
of τ , we know that this concrete schedule will cover the l-th part of V2i, V2i+1 after every
sequence (m1, tm1/l), (m2, tm2/l), . . . , (mj , tmj/l). As the safe set is convex, the start
and end points of this sequence are safe points. Also,

∑
m∈M∗ ‖A(m)‖ · tm/l < ε

implies that the points in the middle are ε-safe. ut

Example 1 continues. An example limit-safe abstract schedule of length 1 is τ =
{(m1, tmax/2), (m2, tmax/2)}. Based on τ we can construct an ε-safe schedule 〈

(
(m1,

tmax/2l), (m2, tmax/2l)
)l〉 where l is any integer greater than tmax/ε.
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2.3 Structure of optimal schedules

We show here that it later suffices to consider only schedules with a particular structure.

Definition 1. We call a finite schedule σ angular if there are no two consecutive timed
actions (mi, ti), (mi+1, ti+1) in σ such that A(mi) = A(mi+1).

We show that while looking for an (ε-)safe (ε-)optimal finite schedule, we can restrict
our attention to angular schedules only.

Proposition 2. For every finite (ε-)safe schedule with time horizon tmax there exists an
angular safe schedule with the same or lower cost.

Henceforth, we assume that all finite schedules are angular. LetM0 = {m | A(m) =
0}, which we will also refer to as zero-modes.

Proposition 3. For every finite safe schedule with time horizon tmax there exists a safe
schedule with the same or lower cost, in which at most one zero-mode is used at the very
beginning.

Henceforth, we assume that all finite schedules use at most one zero-mode timed
action and only at the very beginning.

2.4 Approximation algorithms

We study approximation algorithms for the total cost minimisation problem in multi-
mode systems. We say that an algorithm is a constant factor approximation algorithm
with a relative performance ρ iff, for all inputs x, the cost of the solution that it computes,
f(x), satisfies OPT (x) ≤ f(x) ≤ (1 + ρ) · OPT (x), where OPT (x) is the optimal
cost for the input x. We are particularly interested in polynomial-time approximation
algorithms. A polynomial-time approximation scheme (PTAS) is an algorithm that, for
every ρ > 0, runs in polynomial-time and has relative performance ρ. Note that the
running time of a PTAS may depend in an arbitrary way on ρ. Therefore, we typically
strive to find a fully polynomial-time approximation scheme (FPTAS), which is an
algorithm that runs in polynomial-time in the size of the input and 1/ρ.

The 0-1 Knapsack problem is a well-known NP-complete optimisations problem,
which possess multiple FPTASes (see e.g. [18]). In this problem we are given a knapsack
with a fixed volume and a list of items, each with an integer volume and value. The aim
is to pick a subset of these items that together do not exceed the volume of the knapsack
and have the maximum total value.

3 Complexity of limit-safe and ε-safe finite control
As our one-dimensional model strictly generalises the simple linear hybrid automata
considered in [22], we immediately obtain the following result.

Theorem 1 (follows from [22], Theorem 3). Given (one-dimensional) multi-mode
system A, constants tmax and C (both in binary), checking whether there exists a safe
schedule in A with time horizon tmax and total cost at most C is NP-hard.
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In the rest of this section we fix a (multi-dimensional) multi-mode system A and
time horizon tmax.

Theorem 2. If a limit-safe abstract schedule exists in A, then there exists one of expo-
nential length and it can be constructed in polynomial time.

Proof (sketch). Before we formally prove this theorem, we need to introduce first a bit
of terminology. We call a mode m safe for time t > 0 at V ∈ S := {x ∈ RN : Vmin ≤
x ≤ Vmax} if V +A(m)t ∈ S. Also, m is safe at V if there exists t > 0 such that m is
safe for time t at V . We say that a coordinate of a state, V ∈ S, is at the border if that
coordinate in V is equal to the corresponding coordinate in Vmin or Vmax.

Our algorithm first removes from M all modes that will never be safe to use in a
limit-safe schedule (and it can be found in the extended version of this paper [23]). This
is an adaptation of [8, Theorem 7] where an algorithm was given for finding safe modes
that can ever be used in a schedule with no time horizon. The main difference here is that
the modes in M∗ can always be used in a limit-safe abstract schedule even if they are
not safe to use. We find here a sequence of sets of modes M∗ =M0 ⊂M1 ⊂M2 ⊂ . . .
such Mi+1 is the set of modes that are safe at a state reachable from V0 via a limit-safe
abstract schedule that only uses modes from Mi. Note that at some step k ≤ |M | this
sequence will stabilise, i.e. Mk =Mk+1. Similarly as in the proof of [8, Theorem 7], we
can show that no mode from M \Mk can ever be used by a limit-safe abstract schedule.
As a result, we can remove all these modes from M .

Next, we remove all modes that cannot be part of a limit-safe abstract schedule with
time horizon tmax. For this, for each m, we formulate a very similar linear programme
(LP) as above (again, more details in [23]), where we ask for the time delay of m to be
positive and the total time delay of all the modes to be tmax. By a simple adaptation of
the proof of [8, Theorem 4], if this LP is not satisfiable then m can be removed from A.

Next, we look for the easiest possible target state Vend that can potentially be reached
using a limit-safe abstract schedule from V0 with time horizon tmax. For this, Vend has
to have the least number of coordinates at the border of the safe set. Note that this is
well-defined, because if V and V ′ are two points reachable from V0 via a limit-safe
abstract schedules τ and τ ′ with time horizon tmax, respectively, then τ/2 (i.e. divide all
abstract and timed actions delays in τ by 2) followed by τ ′/2, is also a limit-safe abstract
schedule with time horizon tmax, which reaches (V + V ′)/2. However, (V + V ′)/2 has
a coordinate at the border iff both V and V ′ have it as well. This shows that there is a
state with a minimum number of coordinates at the border.

To find the coordinates that need to be at the border we will use the following LP.
We have a variable xi for each dimension i ≤ N and a constraint that requires xi to
be less or equal to the i-th coordinate of Vmax − Vend and Vend − Vmin. We also add that∑
m∈M tm = tmax and Vend = V0 +

∑
m∈M tm · A(m), with the objective Maximise∑

i xi. If the value of the objective is > 0, we will get to know a new coordinate that
does not have to be at the border. We then remove it from the LP and run it again. Once
the objective is 0, then all the remaining coordinates, I , have to be at the border and
the solution to this LP tells us, at which border the solution has to be located (it cannot
possibly be at the border of both Vmin and Vmax as then we could reach the middle).

Next, in order to bound the length of a limit-safe abstract schedule by an exponential
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in the size of the input, we not only need a state with the minimum number of coordinates
at the border, but also sufficiently far way from the border. Otherwise, we may need
super-exponentially many timed actions to reach it. In order to find such a point, we
replace all xi-s in the previously defined LP by a single variable x which is smaller
or equal to all the coordinates of Vmax − Vend and Vend − Vmin from I . We then set the
objective to Maximise x, which will give us a suitable easy target state Vend.

Now, consider A′, which is the same as A but with all slopes negated (i.e. A′(m) =
−A(m) for all m ∈ M ). We claim that Vend is reachable from V0 using a limit-safe
abstract schedule τ iff (V0 + Vend)/2 is reachable from V0 inA with time horizon tmax/2
and (V0 + Vend)/2 is reachable from Vend in A′ with time horizon tmax/2; this again
follows by considering τ/2. Note that a coordinate of (V0 + Vend)/2 is at the border iff
it is at the border in both V0 and Vend.

This way we reduced our problem to just checking whether a limit-safe abstract
schedule exists from one point to another more permissive point (i.e. where the set of
safe modes is at least as big) within a given time horizon. The algorithm that solves this
problem is provided in the extended version. It again reuses the same constructions as
above, e.g. constructs exactly the same sequence of sets of modes M∗ =M0 ⊂M1 ⊂
. . . ⊂Mk, and its correctness follows by a similar reasoning as above. We now need to
invoke this algorithm twice: to check that (V0 + Vend)/2 is reachable from V0 with time
horizon tmax/2 and that (V0 + Vend)/2 is reachable from Vend with time horizon tmax/2
in A′. If at least one of these calls return NO, then no limit-safe abstract schedule from
V0 to Vend can exist. Otherwise, let σ and σ′ be the schedules returned by these two calls,
respectively. Then the concatenation of σ with the reverse of σ′ is a limit-safe abstract
schedule that reaches Vend from V0 with time horizon tmax. ut

Theorem 3. Finding an optimal limit-safe abstract schedule in A can be done in non-
deterministic exponential time.

Proof. The limit-safe abstract schedule constructed in Theorem 2 has an exponential
length. To establish a nondeterministic exponential upper bound, we can guess the modes
(and the order in which they occur). With them, we can produce an exponentially sized
linear program, which encodes that the run of the abstract schedule is safe and minimises
the total cost incurred. ut

Theorem 3 and Proposition 1 immediately give us the following.

Corollary 1. If a limit-safe abstract schedule exists in A, then for any ε > 0 an ε-safe
schedule with the same cost can be found in nondeterministic exponential time.

Moreover, from Theorem 2 and the fact that in the case of multi-mode systems with
no discrete costs all abstract schedules have length 1, we get the following.

Corollary 2. Finding an optimal limit-safe abstract schedule for multi-mode systems
with no discrete costs can be done in polynomial time.

We can reduce the computational complexity in the general model if we are willing
to sacrifice optimality for ε-optimality.
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Theorem 4. If a limit-safe abstract schedule exists, then finding an ε-safe ε-optimal
strategy can be done in deterministic polynomial space.

Proof. When reconsidering the linear programme from the end of the proof of Theorem
3, we can guess the intermediate states in polynomial space (and thus guess and output
the schedule) as long as all states along the run (including the time passed so far) are
representable in polynomial space.

Otherwise we use the opportunity to deviate by up to ε from the safe set by increasing
or decreasing the duration of each timed action up to some δ > 0, in order to keep
the intermediate values representable in space polynomial in |A| and ε. However, we
apply these changes in a way that the overall time remains tmax. Clearly this is possible,
because within δ/2 of the actual time point of each state along the run, there is a value
whose number of digits in the standard decimal notation is at most equal to the sum of
the number of digits in δ/2 and tmax. Picking any such point for every interval would
induce a schedule with the required property and they can be simply guessed one by one.

The final imprecision introduced by this operation is at most b · δ ·maxm∈M |A(m)|,
where b is a bound on the number of timed actions in a limit-safe schedule, which is
exponential in |A|. If we choose δ = ε/(b · maxm∈M |A(m)|), then we will get the
required precision.

Although our algorithm is nondeterministic, due to Savitch’s theorem, it can be
implemented in deterministic polynomial space. ut

4 Structure of Finite Control in One-dimension
We show in this section that any finite safe schedule in one-dimension can be transformed
without increasing its cost into a safe schedule, which follows one of finitely many
regular patterns. The crucial component of this normal form will be a “leap” that we
define below. We first introduce some notation. Let M+ = {m | A(m) > 0} and
M− = {m | A(m) < 0}. Recall that M0 = {m | A(m) = 0}. We will call a mode, m,
an up mode, down mode, or zero-mode if m ∈M+, m ∈M−, or m ∈M0, respectively.
Similarly, the trend of a timed action (m, t) is up, down, flat if m is an up, down, zero-
mode, respectively. For any subsequence of timed actions σ′ = 〈(mi, ti), . . . , (mj ,
tj)〉 in a schedule σ, whose run is run(σ) = 〈V0, V1, . . . , Vk〉, we say that σ′ starts at
state v and ends at state v′ iff v = Vi−1 and v′ = Vj . We use the same terminology for
a single timed action (in this case this subsequence has length 1).

Definition 2. A partial leap is a pair of consecutive timed actions (mi, ti), (mi+1, ti+1)
in a safe schedule such thatmi ∈M+,mi+1 ∈M−, andA(mi)ti+A(mi+1)ti+1 = 0,
i.e. the state of a multi-mode system does not change after any partial leap. A partial
leap is complete if A(mi)ti = Vmax − Vmin. We will simply refer to complete leaps as
leaps.

There are |M+ ×M−| types of leaps. A leap is of type (m,m′) ∈ M+ ×M− iff
mi = m and mi+1 = m′. Let ∆tm and ∆πm denote the time and cost it takes for an
up mode m to get from Vmin to Vmax or a down mode m to get from Vmax to Vmin. Note
that ∆tm = |(Vmax−Vmin)/A(m)| and ∆πm = πd(m)+πc(m) ·∆tm. By ∆tm,m′ and
∆πm,m′ we denote the time duration and the cost of a leap of type (m,m′) ∈M+×M−,
respectively. Note that ∆tm,m′ = ∆tm +∆tm′ and ∆πm,m′ = ∆πm +∆πm′ .
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Any safe schedule σ can be decomposed into three sections that we will call its head,
leaps, and tail. The head section ends after the first timed action that ends at Vmin. The
leaps section contains only leaps of possibly different types following the head section.
Finally, the tail section starts after the last leap in the leaps section has finished. Note
that any of these sections can be empty and the tail section can in principle contain
further leaps. We show here that, for any safe schedule of length at least three, there
exists another safe one with the same or a smaller cost, whose head and tail sections
follow one of the 10 patterns presented in Figure 3 and Figure 4, respectively, where
partial up/down means that the next state is not at the border. For each of these patterns,
there exists an example which shows that an optimal safe schedule may need to use such
a pattern and hence it is necessary to consider it. In order to prove this, we first need to
define several cost-nonincreasing and safety-preserving operations that can be applied to
safe schedules. These will later be applied in Theorem 5 to transform any safe schedule
into one of the just mentioned regular patterns. These operations are easy to explain via
a picture, but cumbersome to define formally. Therefore, the formal definitions can be
found in the extended version of this paper [23] and we present here only the intuition
behind them.

Let σ be any safe finite schedule. Following Proposition 2 and 3, we can assume
that σ is angular and only contains at most one timed action with a zero-mode, and if
it contains one, this action occurs at the very beginning. Unless explicitly stated, the
operations below are defined for timed actions with up or down trend only.

Vmax

Vmin
1

2

m1

3
m2

4m3

2′
m2

3′m3

m1

Vmax

Vmin
1

2

m1

3

m2

4

m3

5

m4

2′

m3

3′

m4 4′

m1
m2

Fig. 1: On the left, the rearrange operation applied to three timed actions 1-2-3 with
modes m1,m2,m3 results in 1’-2’-3’ with modes m2,m3,m1. On the right, the shift
operation is being applied to a partial leap 1-2-3 which will be moved after the (complete)
leap 3-4-5.

The first operation that we need is the rearrange operation, which simply changes
the order of any subsequence of timed actions with the same trend. The next one is the
shift operation. It cuts any subsequence of timed actions that start and end at the same
state, V , and pastes this subsequence after any timed action that ends at V . The effect of
these two operations can be seen in Figure 1.

Next is the shift-down operation. We can see an example of applying this operation
in Figure 2. Intuitively, it can rearrange any subsequence of timed actions that start and
end at the same state and move them after any timed action that ends at Vmin. The most
complicated operation we define is the wedge operation. It acts on three consecutive
timed actions in a safe schedule and simultaneously shrinks the middle action while
extending the other two, or stretches the middle action while shrinking the other two. We
can see its behaviour in Figure 2. Intuitively, it moves the timed action m2 parallelly up
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Vmin

Vmax

1

2

mi

3

mi+1

4

mi+2

5

mi+3

3’

mi+3 4’

mi+2

mi+1 Vmin

Vmax

1

2

m1

3

m2

4

m3

7

6 m2

5

m2

Fig. 2: On the left, an example of applying the shift-down operation to timed actions
mi+1,mi+2. These actions are rearranged to move after point 5, which becomes point
3’ (i.e. following timed action mi+3). On the right, an example of applying the wedge
operation to three timed actions m1,m2,m3. This operation is a (parallel) translation
of the action m2, which changes the time duration of each of theses actions. After this
operation either the m2 line touches Vmin, which would remove m1 from the schedule,
or the m2 line touches Vmax, which would change a state along the run of the schedule to
be at the border.

or down, until either the timed action m1 is removed or m2 ends at Vmax. The direction
depends on the cost gradient, but as the cost delta function of this operation is linear, one
of these directions is cost-nonincreasing.

Finally, we define the resize operation that will be used the most in our procedure.
The resize operation requires one parameter t ∈ R and can act on any two consecutive
timed actions in a safe schedule. Intuitively, if t < 0, this operation decreases the total
time of this pair of timed actions by |t| while changing only the middle state between
these two timed actions along the run of the schedule. If t > 0, this operation increases
the duration of this pair of timed actions by t while again changing only the state
between them along the run. If t > 0 then we will also refer to this operation as the
stretch operation and if t < 0 as the shrink operation with parameter −t > 0. If the
stretch and shrink operations are simultaneously applied with the same parameter t to
two non-overlapping pairs of timed actions, the result is a safe schedule with the same
time horizon as before, but with a possibly different total cost. We will call a flexi any
subsequence of length 2 in a safe schedule such that both shrink and stretch operations
can be applied to it for some t > 0 without compromising its safety. A simultaneous
application of these two operations to flexis is demonstrated in Figure 5 and 6.

Consider two non-overlapping flexis at positions i and j in a safe schedule σ. Let
σ′ = resize(σ, i, t) be the resulting schedule of applying the resize operation with
parameter t to the i-th and i + 1-th timed actions in σ and resize-domain(σ, i) be
the maximal closed interval from which t can be picked to ensure that σ′ is safe.
Similarly, let σ′′ = resize(σ, j,−t) and σ′′′ = resize(resize(σ, i, t), j,−t)). Note that
σ′′′ has the same time horizon as σ and it is safe as long as t ∈ resize-domain(σ, i) ∩
resize-domain(σ, j) and let us denote this closed interval by I . Furthermore, π(σ′′′)−
π(σ) = π(σ′)− π(σ) + π(σ′′)− π(σ) because the two flexis did not overlap. As it is
shown in the extended version, both π(σ′)−π(σ) and π(σ′′)−π(σ) are linear functions
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in t in the interior of I . As a result, π(σ′′′)− π(σ) is also a linear function in t and so its
minimum value is achieved at one of the endpoints of I . Also, at such an endpoint, one
of the time actions in these two flexis will disappear and as a result the total cost would
be reduced even further. It follows, that there is an endpoint of I such that selecting it
as t will not increase the cost of the schedule, but it will remove a flexi from σ. As the
zero-mode timed action and the last timed action in a schedule can have flexible time
delay, we can also define the resize operation for them in a similar way. As a result, we
can apply the resize operation with parameter t to any of these (including a flexi) and
with parameter −t to the other. Reasoning as above, there is a value for t such that the
cost of the resulting schedule does not increase, the schedule remains safe, and at least
one of the timed actions is removed from σ or one more state along the run of σ becomes
Vmin or Vmax.

t = 0 t = 0 t = 0

t = 0 t = 0 t = 0

Vmax

Vmax

Vmin

Vmin

(a) (b) (c)

(d) (e) (f)

t = 0 t = 0 t = 0
(g) (h) (i)

Vmax

Vmin

1 2m1

3

m2

1

2

m1
1

2

m1

3

m2

1
2

m1

3

m2

4

m3

1

2

m1

3

m2
1

2

m1

3

m2

4

m3

1

2

m1

3

m2

4

m3

1

3

1

2

m1

4

2

m1

m2
3

m2

m3

Fig. 3: Ten possible head patterns: (a) flat+down (b) down (c) partial-up+down (d)
flat+up+down (e) up+down (f) partial-down+up+down (g) partial-up+up+down (h)
partial-down+down (i) up+partial-down+down and (j) empty (not depicted).

Theorem 5. For every safe schedule σ in a one-dimensional multi-mode system there
exists a safe schedule σ′ whose head section matches one of the patterns in Figure 3, tail
section matches one of the patterns in Figure 4, and π(σ′) ≤ π(σ) holds. Furthermore,
it suffices to consider only 44 combinations of these head and tail patterns, and the
length of all of them is at most five.

Proof. We will repeatedly apply combination of shrink and stretch operations to flexis
until we remove all non-overlapping ones. Note that after each such an application either
a timed action is removed or one more state along the run of σ becomes equal to Vmax or
Vmin. We claim that the following steps will transform σ into a suitable σ′:
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Vmax

Vmin

tmax

Vmax

Vmin

(a)

tmax(d)
tmax

(e)

tmax tmax
(g) (h)

tmax tmax(b) (c)

tmax
(f)

(i)

Vmax

Vmin

tmax

1

2

m1

1

2

m1
3

m2

1

2

m1

4

3

m3

2 m2

1

m1

1

2

m1

3

m2

4

m3

41

2

m1

3

m2

1

2

m1

3m2

m3

1

2

m1

3

m2

5

1

2

m1 3m2

4

m3 m4

Fig. 4: Ten possible tail patterns: (a) partial-up (b) partial-up+up (c) up+partial-
down+down (d) up+partial-down (e) up (f) partial-up+down (g) partial-up+up+down (h)
partial-up+down+up (i) up+partial-down+down+up and (j) empty (not depicted).

1. as long as there are at least one pair of non-overlapping flexis then shrink one and
stretch the other until a timed action is removed or a new state at the border is
created;

2. once there is only one flexi left or two overlapping ones, use the shift or shift-down
operation to move them to the end of the schedule;

3. if the first timed action is flat, pair it with the remaining flexi to remove one of them
using the shrink-stretch operation combination;

4. if the last state of run(σ) is not at the border and a flexi or flat timed action remains
after the previous step, they should be paired with each other for the shrink-stretch
operation combination;

5. if two overlapping flexis exist, use the wedge operation to resolve them;
6. finally, if the tail section still does not follow any of the patterns, apply the shift-down

operation to the (unique) segment that starts and ends at Vmax.

A graphical representation of this procedure when applied to an example schedule is
provided in the extended version. It is easy to see that the first step of this procedure
will stop eventually because σ has a finite number of timed actions and states along its
run. The rest of the steps of this procedure just try to reduce the number of possibilities
for the head and tail sections. Note that, apart from the initial state, there can be only
one state, along the run of the resulting σ′, which is not at the border. This is because
otherwise a shrink-stretch or wedge operation could still be applied. Drawing all possible
patterns with one point not at the border and eliminating the ones that are inter-reducible
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using one of these operations, results in Figure 3 for the head section and Figure 4 for
the tail section.

If we try to combine all these head and tail pattern together then this would result in
10 · 10 = 100 possible combinations. However, as just mentioned, there can be only one
point not at the border or a zero-mode timed action in a schedule so these combinations
of head and tail patterns can be reduced further. In particular, any head pattern can
be combined with tail patterns (e) and (j), but only (b), (e), (j) head patterns can be
combined with the remaining tail ones. Therefore, there are 10 · 2+3 · 8 = 44 combined
patterns and it is easy to check that none of them has length larger than five (this is
important for the computational complexity stated in Theorem 8). ut

Vmin

Vmax

Stretch by Shrink by
1

2

m1

3

m2

1′

2′

m3

3′

m4

5

4

m2

t

4′

5′

m3

t

Fig. 5: Shrink and stretch operations being applied to two up-up flexis. The 1-2-3 one
is stretched by t, which results in 1-4-5, and 1’-2’-3’ is shrunk by t, which results in
4’-5’-3’. Note that 3 and 5 (also, 1’ and 4’) are the same states but shifted in time. In
fact, all states along the run of the schedule stay the same apart from 2 and 2’, and as a
result the schedule stays safe.

Stretch by Shrink by

Vmin

Vmax

1

2

mi

3

mi+1

4

5

mj 6

mj+1

2′

3′

mi+1

4′

5′

mj

t t

Fig. 6: Shrink and stretch operations being applied to two up-down flexis.

5 Complexity of Optimal Control in One-dimension
We start with considering the easy case of infinite time horizons, before turning to the
interesting case of finite time horizons.

5.1 Infinite time horizon

First let us consider the caseM0 = ∅. If alsoM+×M− = ∅ then there are no safe sched-
ules with infinite horizon at all. Otherwise, let (i′, j′) = argmin(i,j)∈M+×M− ∆πi,j/∆ti,j .
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Let us pick any mode m− ∈M− and denote t− := (Vmin − V0)/A(m
−). Consider the

infinite schedule σ, which starts with the timed action (m−, t−) followed by infinitely
many complete leaps of type (i′, j′). Obviously, at all times t = t− + k ·∆ti′,j′ where
k ∈ N, σ is more expensive by at most πd(m−)+πc(m−)t− from the cheapest schedule
with time horizon t. Consequently, as k →∞, this shows that the limit superior of the
average cost cannot be smaller than ∆πi′,j′/∆ti′,j′ . At the same time, σ realises this
long-time average.

If M0 6= ∅, then let m′ = minm∈M0 πc(m) be the zero-mode with the lowest
continuous cost to run. We claim that if πc(m′) < ∆πi′,j′/∆ti′,j′ or M+ ×M− = ∅
then an optimal safe schedule is simply (m′,∞), whose limit-average cost is πc(m′),
and otherwise σ defined above is an optimal safe schedule. This is because, if πc(m′) <
∆πi′,j′/∆ti′,j′ , then, at any time point of σ where a leap of some type (i, j) is used,
removing this leap and increasing the time m′ is used for by ∆ti,j reduces the total cost
up to this time point.

Taking into account that argmin(i,j)∈M+×M− ∆πi,j/∆ti,j can be computed using
logarithmic space (because multiplication, division and comparison can be [13]) we get
the following theorem.

Theorem 6. An optimal safe infinite schedule for one-dimensional multi-mode systems
can be computed in deterministic LOGSPACE.

5.2 Finite Time Horizon

Due to Theorem 1, we already know that the decision problem for optimal schedules
in one-dimensional multi-mode systems is at least NP-hard. Here, we show that the
problem is NP-complete by showing that an optimal schedule exists and that each section
of an optimal schedule can be guessed.

Note that the existence of an optimal schedule for the one-dimensional case sets it
apart from the general case. In Example 1, we have shown that optimal schedules are
not even guaranteed to exist for two-dimensional multi-mode systems.

Theorem 7. For any one-dimensional multi-mode systems A and tmax ≥ 0, there exists
an optimal schedule with time horizon tmax, and checking for the existence of an optimal
schedule with cost ≤ C is NP-complete. (When tmax and C are given in binary.)

Proof. First, we can simply iterate over all schedules of length one and directly calculate
their costs. Next, we can iterate over pairs of modes, m1 and m2, and for each of them
solve a linear program (LP) which will give us the cheapest schedule of length two using
these two modes. This LP finds the cheapest partition of tmax between the two modes and
has the following form: Minimise πc(m1)t1+πc(m2)(tmax− t1)+πd(m1)+πd(m2)

Subject to: 0 ≤ t1 ≤ tmax, Vmin ≤ V0+A(m1)t1 ≤ Vmax and
Vmin ≤ V0+A(m1)t1+A(m2)(tmax − t1) ≤ Vmax.

This can be done in O(|A|2) time.
Now, for schedules of length at least three, we showed in Section 4 that any such a

schedule can be transformed without increasing its cost into one that can be split into
three sections: the head section, the leaps section, and the tail section (some of which
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may be empty). Due to Theorem 5, there are 44 combined patterns for the tail and head
sections. Note that, when considering only the cost of the whole schedule, it suffices for
us to know the number of leaps of each type in the leaps section and not their precise
order. Notice that a schedule with time horizon tmax can contain at most btmax/∆πi,jc
leaps of type (i, j). The size of this number is polynomial in the size of the input A.
There are O(|M |2) types of leaps so the number of leaps of each type and the combined
pattern of the schedule can be guessed non-deterministically with polynomially many
bits. This guess uniquely determines the cost of the schedule. This is because, after the
total time of the leaps section is deducted from tmax, we get the exact time the head and
tail section have to last for. Each combined pattern has at most one of the following: a
flexi, a zero-mode, or the last state not at the border. The time remaining will determinate
exactly (if at all possible) the value of this single flexible point along this schedule. Now,
computing the cost of the resulting schedule and checking whether it is lower than C
can be done in polynomial time. This shows that the problem is in NP. It also shows that
optimal schedules exist, because there are only finitely many options to choose from. ut

6 Approximate Optimal Control in One-Dimension
We first show an approximation algorithm with a 3-relative performance for the cost
minimisation problem in one-dimensional multi-mode systems, which runs in O(|A|7)
time. Our algorithm tries all possible patterns for an optimal schedule and for the
leaps section always picks leaps of the same type. It then adds, if necessary or for cost
efficiency, a partial leap to the leaps section and minimises the total cost of the just
constructed schedule by optimising the time duration of this partial leap. This constant
approximation algorithm is crucial for showing the existence of an FPTAS for the same
problem in the next subsection.

Theorem 8. Computing a safe schedule with total cost at most three times larger than
the optimal one for one-dimensional multi-mode system A can be done in O(|A|7) time.

We now show that the cost minimisation problem for one dimensional multi-mode
systems is in FPTAS by a polynomial time reduction to the 0-1 Knapsack problem, for
which many FPTAS algorithms are available (see e.g. [18]). This is similar to the FPTAS
construction in [22], but differs in how the modes with fractional duration are handled.
First we iterate over all possible schedules of length at most two and find the cheapest
one in polynomial time. Next, thanks to Theorem 5, all optimal schedules longer than
two can be transformed into one of 44 different patterns. Each of these patterns results
in a slightly different FPTAS formulation. An FPTAS for the general model consists of
all of these individual FPTASes executed one after another. The details of the proof are
provided in the extended version.

Theorem 9. Solving the optimal control problem for multi-mode systems with relative
performance ρ takes O(poly(1/ρ)poly(size of the instance)) time and is therefore in
FPTAS.
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