362 research outputs found

    Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction?

    Get PDF
    The 18F(p,\alpha)15O reaction rate is crucial for constraining model predictions of the \gamma-ray observable radioisotope 18F produced in novae. The determination of this rate is challenging due to particular features of the level scheme of the compound nucleus, 19Ne, which result in interference effects potentially playing a significant role. The dominant uncertainty in this rate arises from interference between J\pi=3/2+ states near the proton threshold (Sp = 6.411 MeV) and a broad J\pi=3/2+ state at 665 keV above threshold. This unknown interference term results in up to a factor of 40 uncertainty in the astrophysical S-factor at nova temperatures. Here we report a new measurement of states in this energy region using the 19F(3He,t)19Ne reaction. In stark contrast with previous assumptions we find at least 3 resonances between the proton threshold and Ecm=50 keV, all with different angular distributions. None of these are consistent with J\pi= 3/2+ angular distributions. We find that the main uncertainty now arises from the unknown proton-width of the 48 keV resonance, not from possible interference effects. Hydrodynamic nova model calculations performed indicate that this unknown width affects 18F production by at least a factor of two in the model considered.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions

    Full text link
    [EN] Microbial communities were thoroughly characterized in a mesophilic anaerobic membrane bioreactor (AnMBR) and a thermophilic continuous stirred tank reactor (CSTR), which were both treating recalcitrant microalgal biomass dominated by Scenedesmus. 16S rRNA amplicon sequencing analysis was performed when the AnMBR achieved 70% algal biodegradation and revealed high microbial diversity, probably due to the high solid retention time (SRT) of the AnMBR configuration. The bacterial community consisted of Chloroflexi (27.9%), WWE1 (19.0%) and Proteobacteria (15.4%) as the major phyla, followed by Spirochaetes (7.7%), Bacteroidetes (5.9%) and Firmicutes (3.6%). These phyla are known to exhibit proteolytic and cellulolytic capabilities required to degrade the Scenedesmus cell-wall. Methanosaeta was the most abundant methanogen detected in the AnMBR suggesting that methane was mainly produced by the acetoclastic pathway. In comparison, the thermophilic CSTR achieved 32.6% algal biodegradation, and its bacterial community had fewer Operational Taxonomic Units (977 OTUs) than the AnMBR (1396 OTUs), as is generally observed for high temperature biogas reactors. However, phyla with high hydrolytic potential were detected such as Firmicutes (34.6%) and the candidate taxon EM3 (38.7%) in the thermophilic CSTR. Although the functional metabolism of EM3 in anaerobic digesters is unknown, the high abundance of EM3 suggests that this taxon plays an important role in the thermophilic, anaerobic degradation of Scenedesmus. The abundant syntrophic bacteria and the detection of hydrogenotrophic methanogens in the thermophilic CSTR suggest that the hydrogenotrophic pathway was the dominant pathway for methane production in this reactor.This research has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Project CTM2011-28595-C02-01/02), which is gratefully acknowledged. Support from The Research Council of Norway, grant number 228747 (BiogGasFuel), is also appreciated.Greses-Huerta, S.; Gaby, JC.; Aguado García, D.; Ferrer, J.; Seco Torrecillas, A.; Horn, SJ. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research. 27:121-130. https://doi.org/10.1016/j.algal.2017.09.002S1211302

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    The 20Ne(d,p)21Ne transfer reaction in relation to the s-process abundances

    Get PDF
    A study of the 20Ne(d,p)21Ne transfer reaction was performed using the Quadrupole Dipole Dipole Dipole (Q3D) magnetic spectrograph in Garching, Germany. The experiment probed excitation energies in 21Ne ranging from 6.9 MeV to 8.5 MeV. The aim was to investigate the spectroscopic information of 21Ne within the Gamow window of core helium burning in massive stars. Further information in this region will help reduce the uncertainties on the extrapolation down to Gamow window cross sections of the 17O(α,γ)21Ne reaction. In low metallicity stars, this reaction has a direct impact on s-process abundances by determining the fate of 16O as either a neutron poison or a neutron absorber. The experiment used a 22-MeV deuteron beam, with intensities varying from 0.5-1 μA, and an implanted target of 20Ne of 7 μg/cm2 in 40 μg/cm2 carbon foils. Sixteen 21Ne peaks have been identified in the Ex = 6.9-8.5 MeV range, of which only thirteen peaks correspond to known states. Only the previously-known Ex = 7.960 MeV state was observed within the Gamow window

    Do Leaf Cutting Ants Cut Undetected? Testing the Effect of Ant-Induced Plant Defences on Foraging Decisions in Atta colombica

    Get PDF
    Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this “induced defence hypothesis,” we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the “induced defence hypothesis” and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses

    Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.</p> <p>Results</p> <p>The phylogeny of <it>E. coli </it>varies according to the segment of chromosome analyzed. Recombination between extant <it>E. coli </it>groups is largely limited to only three intergroup pairings.</p> <p>Conclusions</p> <p>Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, <it>E. coli </it>are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of <it>E. coli </it>as a species, or herald the coalescence of <it>E. coli </it>groups into new species.</p

    Problematic Instagram use: the role of perceived feeling of presence and escapism

    Get PDF
    The use of social networking sites is becoming increasingly popular. Although there are many studies investigating the problematic use of social networking sites such as Facebook, little is known about problematic Instagram use (PIU) and factors related to it. The present study developed a complex model in order to examine the mediating role of perceived feeling of presence (i.e., social, spatial, and co-presence) and escapism between using different Instagram features and PIU. A total of 333 Instagram users from a high school and a state university, aged between 14 and 23 years (Mage = 17.74 years, SD = 2.37, 61% female), completed a "paper-and-pencil" questionnaire comprising measures of social presence, spatial presence, co-presence, Instagram escapism, and PIU. In addition, frequency of use of five different Instagram features (i.e., watching live streams; watching videos; looking at posted photographs; liking, commenting on others' posts; and getting likes and comments from others) were assessed using a 7-point Likert scale. Analysis indicated that watching live streams was indirectly associated with PIU via escapism, spatial presence, and co-presence. Leaving likes and comments on others' posts was both directly and indirectly associated with PIU via co-presence and escapism. Escapism mediated the relationships between social and spatial presence and co-presence and PIU. The findings of the present study appear to indicate that a minority of individuals use Instagram problematically and that problematic Instagram use is associated with the frequency of watching live streams, liking, and commenting on others’ posts on Instagram, being able to feel a higher sense of presence using Instagram, and using Instagram as an escape from reality
    corecore