129 research outputs found

    The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution

    Get PDF
    We present a series of spectra of SN 1994I in M51, starting 1 week prior to maximum brightness. The nebular phase began about 2 months after the explosion; together with the rapid decline of the optical light, this suggests that the ejected mass was small. Although lines of He I in the optical region are weak or absent, consistent with the Type Ic classification, we detect strong He I λ10830 absorption during the first month past maximum. Thus, if SN 1994I is a typical Type Ic supernova, the atmospheres of these objects cannot be completely devoid of helium. The emission-line widths are smaller than predicted by the model of Nomoto and coworkers, in which the iron core of a low-mass carbon-oxygen star collapses. They are, however, larger than in Type Ib supernovae

    An ∼140-kb Deletion Associated with Feline Spinal Muscular Atrophy Implies an Essential LIX1 Function for Motor Neuron Survival

    Get PDF
    The leading genetic cause of infant mortality is spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of disorders. Previously we described a domestic cat model of autosomal recessive, juvenile-onset SMA similar to human SMA type III. Here we report results of a whole-genome scan for linkage in the feline SMA pedigree using recently developed species-specific and comparative mapping resources. We identified a novel SMA gene candidate, LIX1, in an ~140-kb deletion on feline chromosome A1q in a region of conserved synteny to human chromosome 5q15. Though LIX1 function is unknown, the predicted secondary structure is compatible with a role in RNA metabolism. LIX1 expression is largely restricted to the central nervous system, primarily in spinal motor neurons, thus offering explanation of the tissue restriction of pathology in feline SMA. An exon sequence screen of 25 human SMA cases, not otherwise explicable by mutations at the SMN1 locus, failed to identify comparable LIX1 mutations. Nonetheless, a LIX1-associated etiology in feline SMA implicates a previously undetected mechanism of motor neuron maintenance and mandates consideration of LIX1 as a candidate gene in human SMA when SMN1 mutations are not found

    Optical Spectroscopy of Supernova 1993J During Its First 2500 Days

    Get PDF
    We present 42 low-resolution spectra of Supernova (SN) 1993J, our complete collection from the Lick and Keck Observatories, from day 3 after explosion to day 2454, as well as one Keck high-dispersion spectrum from day 383. SN 1993J began as an apparent SN II, albeit an unusual one. After a few weeks, a dramatic transition took place, as prominent helium lines emerged in the spectrum. SN 1993J had metamorphosed from a SN II to a SN IIb. Nebular spectra of SN 1993J closely resemble those of SNe Ib and Ic, but with a persistent H_alpha line. At very late times, the H_alpha emission line dominated the spectrum, but with an unusual, box-like profile. This is interpreted as an indication of circumstellar interaction.Comment: 19 pages plus 13 figures, AASTeX V5.0. One external table in AASTeX V4.0, in landscape format. Accepted for publication in A

    Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism

    Get PDF
    Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation, whereas increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.German Science Foundation (Grant FE1185)National Institutes of Health (U.S.)Glenn Foundation for Medical ResearchNational Institutes of Health (U.S.) (Grant 5-P50-090381-09)National Institutes of Health (U.S.) (Grant 5-P30-CA14051-39)Burroughs Wellcome FundSmith Family FoundationDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.) (Grant 1R01DK075850-01)National Institutes of Health (U.S.) (Grant 1R01CA160458-01A1

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at http://deep.berkeley.edu/DR4

    The Team Keck Treasury Redshift Survey of the GOODS-North Field

    Full text link
    We report the results of an extensive imaging and spectroscopic survey in the GOODS-North field completed using DEIMOS on the Keck II telescope. Observations of 2018 targets in a magnitude-limited sample of 2911 objects to R=24.4 yield secure redshifts for a sample of 1440 galaxies and AGN plus 96 stars. In addition to redshifts and associated quality assessments, our catalog also includes photometric and astrometric measurements for all targets detected in our R-band imaging survey of the GOODS-North region. We investigate various sources of incompleteness and find the redshift catalog to be 53% complete at its limiting magnitude. The median redshift of z=0.65 is lower than in similar deep surveys because we did not select against low-redshift targets. Comparison with other redshift surveys in the same field, including a complementary Hawaii-led DEIMOS survey, establishes that our velocity uncertainties are as low as 40 km/s for red galaxies and that our redshift confidence assessments are accurate. The distributions of rest-frame magnitudes and colors among the sample agree well with model predictions out to and beyond z=1. We will release all survey data, including extracted 1-D and sky-subtracted 2-D spectra, thus providing a sizable and homogeneous database for the GOODS-North field which will enable studies of large scale structure, spectral indices, internal galaxy kinematics, and the predictive capabilities of photometric redshifts.Comment: 17 pages, 18 figures, submitted to AJ; v2 minor changes; see survey database at http://www2.keck.hawaii.edu/realpublic/science/tksurvey

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = 20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp 1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z approx. 1, approaching approx. 5%-10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z approx. 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far

    A process model of the formation of spatial presence experiences

    Get PDF
    In order to bridge interdisciplinary differences in Presence research and to establish connections between Presence and “older” concepts of psychology and communication, a theoretical model of the formation of Spatial Presence is proposed. It is applicable to the exposure to different media and intended to unify the existing efforts to develop a theory of Presence. The model includes assumptions about attention allocation, mental models, and involvement, and considers the role of media factors and user characteristics as well, thus incorporating much previous work. It is argued that a commonly accepted model of Spatial Presence is the only solution to secure further progress within the international, interdisciplinary and multiple-paradigm community of Presence research
    corecore