59 research outputs found
Driven Topological Transitions in Active Nematic Films
The topological properties of many materials are central to their behavior,
with the dynamics of topological defects being particularly important to
intrinsically out-of-equilibrium, active materials. In this paper, local
manipulation of the ordering, dynamics, and topological properties of
microtubule-based extensile active nematic films is demonstrated in a joint
experimental and simulation study. Hydrodynamic stresses created by
magnetically actuated rotation of disk-shaped colloids in proximity to the
films compete with internal stresses in the active nematic, enabling local
control of the motion of the +1/2 charge topological defects that are intrinsic
to spontaneously turbulent active films. Sufficiently large applied stresses
drive the formation of +1 charge topological vortices in the director field
through the merger of two +1/2 defects. The directed motion of the defects is
accompanied by ordering of the vorticity and velocity of the active flows
within the film that is qualitatively unlike the response of passive viscous
films. Many features of the film's response to the disk are captured by Lattice
Boltzmann simulations, leading to insight into the anomalous viscoelastic
nature of the active nematic. The topological vortex formation is accompanied
by a rheological instability in the film that leads to significant increase in
the flow velocities. Comparison of the velocity profile in vicinity of the
vortex with fluid-dynamics calculations provides an estimate of film viscosity
Recommended from our members
Evidence for insertional codemixing: mixed compounds and French nominal groups in Brussels Dutch
In this paper we analyse mixed compounds, such as legume+winkel ‘vegetable shop, greengrocery’ and winter+paletot ‘winter coat’ which contain a French and a Dutch element, and French nominal groups, such as carte d’identité ‘identity card’, and journal parlé ‘radio news’, which bilingual speakers from Brussels frequently insert into Brussels Dutch utterances. Using Muysken’s (2000) typology of bilingual speech, we claim that the mixed compounds and the nominal groups display the characteristics of insertional code-mixing. In addition, some evidence for the existence of a continuum between borrowing and code-switching can be obtained from these examples. As the multimorphemic units that are inserted into Dutch are neither single words, nor full constituents, their status in the lexicon raises interesting issues for researchers interested in the interface between syntax and the lexicon (see also Backus 2003). We try to argue that nominal groups such as carte d’identité and journal parlé are probably best seen as lexical templates or constructional idioms (Booij, 2002b). The insertion of French constructional idioms in Brussels Dutch represents an innovation in the lexical patterns that are available to speakers of this language, which is highly relevant for theories of language change
Dancing disclinations in confined active nematics
The spontaneous emergence of collective flows is a generic property of active fluids and often leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their orientation field. However, the ability to achieve structured flows and ordered disclinations is of particular importance in the design and control of active systems. By confining an active nematic fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they continually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We anticipate that this biomimetic ability to self-assemble organised topological disclinations and dynamically structured flow fields in engineered geometries will pave the road towards establishing new active topological microfluidic devices
Functional Evidence of Multidrug Resistance Transporters (MDR) in Rodent Olfactory Epithelium
Background: P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. Principal Findings: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of speciesspecific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species
Topological sound in active-liquid metamaterials
Liquids composed of self-propelled particles have been experimentally
realized using molecular, colloidal, or macroscopic constituents. These active
liquids can flow spontaneously even in the absence of an external drive. Unlike
spontaneous active flow, the propagation of density waves in confined active
liquids is not well explored. Here, we exploit a mapping between density waves
on top of a chiral flow and electrons in a synthetic gauge field to lay out
design principles for artificial structures termed topological active
metamaterials. We design metamaterials that break time-reversal symmetry using
lattices composed of annular channels filled with a spontaneously flowing
active liquid. Such active metamaterials support topologically protected sound
modes that propagate unidirectionally, without backscattering, along either
sample edges or domain walls and despite overdamped particle dynamics. Our work
illustrates how parity-symmetry breaking in metamaterial structure combined
with microscopic irreversibility of active matter leads to novel
functionalities that cannot be achieved using only passive materials
ATP-binding cassette (ABC) transporters in normal and pathological lung
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
InfoSyll: A Syllabary Providing Statistical Information on Phonological and Orthographic Syllables
here is now a growing body of evidence in various languages supporting the claim that syllables are functional units of visual word processing. In the perspective of modeling the processing of polysyllabic words and the activation of syllables, current studies investigate syllabic effects with subtle manipulations. We present here a syllabary of the French language aiming at answering new constraints when designing experiments on the syllable issue. The InfoSyll syllabary provides exhaustive characteristics and statistical information for each phonological syllable (e.g. /fi/) and for its corresponding orthographic syllables (e.g. fi, phi, phy, fee, fix, fis). Variables such as the type and token positional frequencies, the number and frequencies of the correspondences between orthographic and phonological syllables are provided. As discussed, such computations should allow precise controls, manipulations and quantitative descriptions of syllabic variables in the field of psycholinguistic research.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
The pore structure of Clostridium perfringens epsilon toxin
Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by Clostridium perfringens, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of β-PFTs (aβ-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double β-barrel, a common feature of the aβ-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications
- …