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Liquids composed of self-propelled particles
have been experimentally realized using molecu-
lar, colloidal, or macroscopic constituents [1-5].
These active liquids can flow spontaneously even
in the absence of an external drive [6—8]. Unlike
spontaneous active flow [9, 10], the propagation
of density waves in confined active liquids is
not well explored. Here, we exploit a mapping
between density waves on top of a chiral flow and
electrons in a synthetic gauge field [11, 12] to
lay out design principles for artificial structures
termed topological active metamaterials. We
design metamaterials that break time-reversal
symmetry using lattices composed of annular
channels filled with a spontaneously flowing
active liquid. Such active metamaterials support
topologically protected sound modes that prop-
agate unidirectionally, without backscattering,
along either sample edges or domain walls and
despite overdamped particle dynamics. Our
work illustrates how parity-symmetry breaking
in metamaterial structure combined with mi-
croscopic irreversibility of active matter leads
to novel functionalities that cannot be achieved
using only passive materials.

We design active metamaterials with transport prop-
erties akin to those of quantum Hall fluids [13] by con-
fining active liquids in periodic geometries that generate
gapped density-wave spectra. Recent studies of topolog-
ical acoustics have revealed that spectral bands charac-
terized by topological invariants host (in their spectral
gaps) robust mechanical states [14-16] and sound modes
that propagate unidirectionally along sample edges and
interfaces [11, 12, 17-22]. However, the translation of
topological-acoustic designs from macroscopic prototypes
to soft materials has so far proven challenging, because
overdamped particle dynamics overcome inertia and sup-
press the propagation of ordinary sound waves at the mi-
croscale. To address this challenge, we elucidate the rela-
tionship between emergent active flow and the spectrum
of topological density waves in a confined liquid com-
posed of self-propelled particles that have overdamped
dynamics and align their velocities, i.e., a confined polar
active liquid.

In order to obtain generic results, we use a continuum
mechanics description of polar active flow. The analog of
Navier-Stokes equations that describe a one-component
fluid of self-propelled particles (with overdamped particle
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FIG. 1: Steady states of polar active liquids in coupled
annular channels. (a) Steady state of a polar active liquid
described by the hydrodynamic Egs. (1,2), in a confinement
geometry based on the Lieb lattice. Note that the interannu-
lar coupling leads to a stable steady-state order reminiscent of
either engaged gears or spins in an antiferromagnet. The col-
ors indicate the azimuthal component vy of the velocity field
(also shown in arrows) around the center of the corresponding
annulus. (b) Steady state of the same liquid simulated using
a particle-based model that is described in the SI. (Dashed
lines indicate periodic boundary conditions.)

dynamics, see Supplementary Information [SI]) are the
Toner-Tu equations [6, 8, 23], which in their simplest
form read:

dro+ 10V - (op) = D,V?p, (1)
v
Op+ Mg(p-V)p=(a—Blp|*)p— ;;Vg + vAp,
(2)

where o(r,t) is the density of active particles that fluc-
tuates around its mean value gg. The polarization field
of the material, p(r,t), denotes the local average orien-
tation of the velocities of the self-propelled units which,
when isolated, all move at the same speed vg. The ef-
fective viscosity, v, the diffusivity, D,, and the other
(positive) hydrodynamic coefficients A, v, «, and 8 have
been computed from a number of microscopic models in
Refs. [2, 24-27]; « and B are the Landau coefficients used
to model the spontaneous breaking of rotational symme-
try; vy relates pressure and density. In the SI, we pro-
vide a concise introduction to the Toner-Tu model and
explain how the left hand side of Eq. (2) originates from
overdamped dynamics of p and not from momentum con-
servation.

Numerically solving Egs. (1) and (2) in the connected-
annuli geometry of Fig. 1a, we find the emergence of a
uniform steady chiral flow in each annulus. As this flow
is a consequence of spontaneous symmetry breaking, left-
handed and right-handed orientations are equally likely
to occur (provided no explicit symmetry breaking occurs,
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FIG. 2: Dispersion of density waves in active metamaterials either with or without topological edge states. (a)
Dispersion of longitudinal density waves in an active liquid with a uniform steady-state flow. For wavenumbers |g| > qo = a/c,
these waves have a linear dispersion, reminiscent of pressure waves in a simple fluid. The spectrum is asymmetric due to the
breaking of Galilean invariance by p, (bottom row, a-c: corresponding steady-state flow). (b) Dispersion of density waves
described by Eq. (3) in the square-lattice geometry with a double unit cell. Bands cross at the point M in the Brillouin zone in
part because the system retains time-reversal symmetry (TRS). In this lattice, the bands’ Chern numbers are not well defined.
(c) Dispersion of these density waves in the Lieb-lattice geometry. Due to broken TRS, the bands generically do not cross. (d)
Zoom-in of the dispersion of these waves in a quasi-one-dimensional waveguide based on the Lieb lattice, with free edges on
the top and bottom (also see Fig. 3d). The bulk modes (blue) correspond to the bands in (c). In addition, we observe chiral
topological edge states plotted in red and green colors which indicate state chirality (defined by group velocity dw/dq) and,
correspondingly, the edge on which these modes are located. These states inhabit gaps between bands with well-defined Chern
number C, # 0. (Note that although C, = 2 for the lower band, it is the sum of Chern numbers Z?:l C; = 1 that determines
the number of edge states.) Below: A density-wave eigenmode of a finite Lieb-lattice sample with frequency in this band gap.

The frequency value is indicated by the dashed lines in c-d.

see e.g., Ref. [28]). These general continuum-mechanics
results are confirmed by particle-velocity maps measured
from a prototypical microscopic model shown in Fig. 1b,
see SI. As particle velocities align in the region shared
between two adjacent annuli, the fluid within these an-
nuli circulates in opposite directions, in analogy with ei-
ther engaged counter-rotating gears or antiferromagnetic
spins. Similar behavior of confined active fluids [29-31]
was observed in bacterial fluids experiments [9] and sim-
ulations of agent-based models [32].

When a homogeneous polar liquid flows through in-
terconnected annuli, the channel geometry determines
the mean polarization po(r), which is proportional to
the steady-state velocity field. We now elucidate how
this emergent spontaneous flow impacts sound propa-
gation. We linearize Egs. (1) and (2) in the limit in
which confinement suppresses fluctuations in the direc-
tion transverse to the mean flow and deep in the polar
liquid phase, in which case both « and g are only weakly
dependent on p. We define w(r,t) = p(r,t) — po(r)
and p(r,t) = o(r,t) — 0o, and confirm that density
waves propagate over a finite range of wave numbers g:
la|/c < ¢ < ¢/(v+ Dy), where ¢ = \/vov; sets the mag-
nitude of the speed of sound, see [6, 8] and SI. In this
regime, density fluctuations obey a wave equation that

depends on pg:
[0: + Avo(po - V)][0: + vo(po - V)]p = Vp. (3)

Whereas (acoustic) density waves in simple driven flu-
ids [11, 12] arise only in systems with inertial dynamics,
such waves in polar active liquids survive even in the over-
damped limit—in the latter case, these waves originate
from Goldstone modes associated with broken rotational
symmetry, see [8] and SI. Fig. 2a shows the dispersion
relation of density waves for a homogeneous polar liquid
uniformly flowing along the z-direction (po(r) = po).
Note that the speed of sound depends on the orienta-
tion of the wavevector q relative to pg, because Galilean
invariance is broken in Eq. (2).

Our design of topological metamaterials exploits (i)
microscopic irreversibility induced by activity and (ii)
parity-symmetry breaking of the structure. To highlight
how the interplay between activity and structural design
leads to metamaterials that globally break time rever-
sal symmetry, we contrast two simple geometries of in-
terconnected channels: one based on the square lattice,
Fig. 2b, and one based on the Lieb lattice, Fig. 2c. Solv-
ing Eq. (3) numerically in a square lattice geometry (see
Methods), we show that the wave spectrum contains de-
generacies at the edge of the Brillouin zone where two
spectral branches intersect (point M). Note that the cor-
responding steady-state flow is invariant with respect to
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FIG. 3: Topologically protected waveguides composed of an active metamaterial. (a) The chiral edge state in Fig. 2d
is robust against defects along the edge: the state goes around a defect instead of backscattering (See SI movie for a time-

dependent simulation).

by taking advantage of antiferromagnetic interannular coupling and deleting a row of the Lieb lattice.

(b) This robustness extends to domain walls separating two different topological phases, constructed

Note that the edge

state follows the domain wall, no matter the wall’s shape. (c¢) By contrast, along a domain wall that doesn’t separate different
topological phases, the edge states are not robust to backscattering. They can scatter off kinks in the wall shape, in the middle
of the sample. (bottom row, b-c: zoom-ins of the steady-states.) (d) Profile of the density within edge states shows that the
state decays exponentially into the bulk. These exponentially localized edge states are characterized by their penetration depth,
which can be controlled by changing the flow speed (top: po = 0.42, bottom: py = 0.5).

simultaneously inverting the arrow of time and perform-
ing a lattice translation. By contrast, the degeneracy at
point M is lifted for the Lieb lattice and a gap opens. Un-
like the square lattice, the Lieb lattice has an odd number
of rings per unit cell and, therefore, a net circulation of
steady-state flow. Heuristically, the spectral-gap open-
ing stems from the frequency difference between density
waves propagating along versus opposite to flow with a
non-vanishing net circulation. As a result, a gap opens
only for unit cells that are chiral. In the limit vopy/c < 1,
we rewrite Eq. (3) as

[(V—iA)? +w?/c*] p=0, (4)

where A = w(\ + 1)vopy/(2¢?), and note that the
steady-state velocity field vgpy couples minimally to the
wavenumber of the density wave [11]. The emergent chi-
ral flow plays the role of a synthetic gauge field for a
charged quantum particle, whereas its curl, the vorticity,
acts analogously to a magnetic field that lifts spectral
degeneracies.

We establish the topological nature of the band struc-
ture corresponding to Eq. (3) in the Lieb lattice by cal-
culating (for each band) an integer-valued topological in-
variant called the Chern number, C,,, see Methods and
Ref. [13] for an introduction. For almost all of the bands
in the spectrum, and for a wide range of values of the
mean polarization pg, we find that C), # 0, Fig. 2¢c-d. As
C, is an integer, it cannot vary smoothly from within
the sample to the exterior (where C,, = 0). Therefore,
C,, can only change if the band gap closes along the sam-
ple edge, locally enabling edge-mode propagation [13].

Such edge modes, shown in Fig. 2d, are called topolog-
ically protected because they arise from the presence of
topological invariants in the bulk, irrespectively of the
sample’s shape, disorder, or strong fluctuations due to
activity. As in quantum Hall fluids, the topological edge
modes are chiral, i.e., they propagate along a single di-
rection, as can be seen in SI movie. The chirality of the
edge modes reflects the chirality of the flow within the
unit cell, i.e., if the flow is reversed so is the direction
of mode propagation, as the movie shows. The system
edge acts as a robust acoustic diode—topological density
waves, unlike ordinary waves, propagate unidirectionally
along the boundary and do not backscatter even if ob-
stacles or sharp corners are introduced, as demonstrated
in Fig. 3a.

Similarly, along the boundary between two regions of
distinct flow chirality, C,, varies from one integer value
to another. Therefore, in this region of space, the band
gap must vanish, which leads to the existence of topolog-
ically protected waves along this interface. A topologi-
cal waveguide can be sculpted in the bulk by deleting a
row of annuli, as in Fig. 3b. For this sample, topologi-
cally robust density waves propagate through the irregu-
larly shaped domain wall in the bulk of the metamaterial.
However, if the domain wall has both a row deletion and a
half-column displacement, then the chirality of flow does
not change across the wall. Consequently, modes associ-
ated with the domain wall are not topologically protected
and do backscatter in the bulk, as exemplified in Fig. 3c.

Whereas the existence of edge waves in polar active
liquids is topologically protected, their penetration depth



into the bulk can be tuned by changing the flow speed.
As shown in the SI, by considering the minimal cou-
pling form of Eq. (4) relevant to the motion of density
waves in the limit vopg/c < 1, we expect the penetra-
tion to be exponential with a penetration depth ¢ scaling
as { ~ |A|7t ~ ac/(vopo), where a is the lattice spac-
ing. We stress that this spatial structure differs from
the Gaussian profiles of quantum Hall states that share
similar topological properties. These predictions are in
good agreement with the numerical resolution of the full
equations of motion: as shown in Fig. 3d, the penetration
of the edge modes is exponential and decreases with the
mean-flow speed.

Having explored the phenomenology of chiral states in
confined active liquids, we can now compare this realiza-
tion of a topological metamaterial with those achieved in
driven liquids [11, 12]. First, in both cases, to achieve a
small penetration depth it is necessary that the speed of
flow be appreciable relative to the speed of sound. For
a simple fluid, this is a limitation — driving the fluid at
speeds near the speed of sound leads to flow instabilities
either in the bulk or in the boundary layer of the fluid.
By contrast, for active liquids, the speed of flow wvypg
and the speed of sound c are distinct parameters enter-
ing the hydrodynamic Eqs. (2) and may, in general, be
comparable, so that the chiral edge state may be readily
observable. Second, whereas metamaterials composed of
driven fluids require motors at each component to pro-
vide the drive, for an active liquid the drive is provided
by the particles composing the liquid, whereas the con-
fining channels prescribe the emergent chiral flow. Third,
topological density waves in polar active liquids originate
from Goldstone modes due to broken rotational symme-
try. As a consequence, they can propagate even if particle
dynamics are overdamped—paving the way towards col-
loidal and other soft matter realizations of mechanical
topological insulators.

We examined topological sound in metamaterials
based on polar active liquids, but our approach can
be applied to wave propagation in other time-reversal-
symmetry-broken active systems. Our results epitomize
the defining feature of topological active metamaterials:
they combine the microscopic irreversibility inherent in
active matter with structural design to achieve function-
alities absent in passive materials.
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A. Methods

The Methods section is organized as follows: We first
provide a derivation of the Toner-Tu equations [23] in-
troduced in the main text by building on conservation
laws and symmetry principles. We also recall how den-
sity waves can propagate in polar active fluids despite
overdamped microscopic dynamics. We then establish a
rigorous analogy between the effect of spontaneous ac-
tive flow on density waves and the effect of a gauge field
on the wave function of a charged quantum particle. We
show how a scaling analysis of the equation for density
waves leads to an estimate for the penetration depth of
a topological edge state in an active metamaterial. Fi-
nally, we include discussions of the calculation of Chern
numbers and of COMSOL simulations.

Toner-Tu hydrodynamics of polar active liquids — The
hydrodynamic equations of a passive polar liquid take
into account three slow variables: the usual density,
p(r,t), and velocity, v(r,t) fields, as well as a broken-
symmetry field, the polarization p(r), defined as the local
average of the particle orientations. When the polar units
that form the liquid propel themselves on a solid surface,
momentum is no longer conserved, because the substrate
acts as a momentum sink. Such systems are referred to as
dry active matter, even though the particles may propel
in a fluid medium as in, e.g., Refs. [1, 2]. The substrate
enables preferential alignment of the particles’ velocities
with their polar orientation. The hydrodynamic equa-
tions of the resulting polar active liquid read:

0o+ Vi(ov;) = DPV?)p, (5)

I (ovj) + Vi (oviv;) = Vioi; — I (v; —vops),  (6)
OH

O0spj +v;Vips + wjipi = v1v; + vavip; — Fp£7 (7)
J

where we have introduced the symmetric part of the
strain-rate tensor v;; = 3 (9;v; + d;v;) and the vortic-
ity tensor wj; = % (0;v; — O7vj). Note that the compo-
nents of the velocity vector v; for this one-fluid model are
the coarse-grained velocities of the self-propelled parti-
cles composing the active liquid and not of the potential
surrounding fluid (e.g., air or solvent). The first (conti-
nuity) equation reflects mass conservation and includes
a diffusive term DPV?2p. The second equation includes
the liquid stress tensor o as well as an active frictional
term proportional to I'Y. This terms differentiates Eq. (6)
from the usual Navier-Stokes equations as it explicitly
breaks momentum conservation. For the sake of simplic-
ity, we consider here a linear coupling between the veloc-
ity and the polarization (the hydrodynamic coefficient vy
has the dimensions of a speed and scales with the speed
of an isolated active particle). Equation (7) describes
the relaxational dynamics of the polarization, see [6].
The left-hand side of Eq. (7) contains the comoving (2nd
term), corotational (3rd term) time-derivative of the po-
larization. The right-hand side of Eq. (7) includes the
effective Hamiltonian H and the dissipative coefficient



T'? along with two frictional terms. The first frictional
term in Eq. (7) contains the friction coefficient 14 and
describes the friction between particle and substrate—
this terms is responsible for the “weathercock effect,” i.e.,
the polar particles’ local alignment with the flow see, e.g.,
Refs. [5, 33]. The second friction term in Eq. (7) contains
the friction coefficient 15 and originates from the friction
between an individual polar particle and the surrounding
active fluid (itself composed of polar particles). The sign
and the magnitude of vy controls the strength of align-

J

Ao+ vV - (0p) = DoV,

ment of the particle polarization with the local elongation
(or compression) axis of the flow.

We can also consider Egs. (5), (6), and (7) in the limit
for which the frictional I'” term dominates Eq. (6). In
this overdamped limit, Eq. (6) reduces to a constraint
equation, v = vgp, and the hydrodynamics is fully cap-
tured by mass conservation and the dissipative dynamics
of the polarization field. A gradient expansion of H then
yields [8, 23]:

v
op + Avgp - Vp = (a — B|p|2) P— Q—;VQ + VAP + XavoV|p|? — Avop(V - p), (9)

where all of the hydrodynamic coefficients depends a pri-
ori on the local density. Note that whereas for a system
with Galilean invariance, A = 1 and Ay = 0, for the polar
active liquid, which lacks this symmetry, these param-
eters may be arbitrary. Studies of realistic microscopic
models have found X\ to be positive, less than, and of
order 1, and for the numerical computations performed
in this work, we assume A\ = 0.8 [2, 24, 25]. The lack
of Galilean invariance as well as momentum conservation
leads to the a and 8 terms in Eq. (9), which suggests a
preference for either zero or nonzero velocity—depending
on the sign of a. In the article, for the sake of simplicity
we focus on the case in which the Ay terms are negligible.
In this case, Eqgs. (8,9) reduce to Egs. (1,2) in the main
text, and are reproduced here:

dro+ 10V - (op) = D,V?p, (10)
v
dp+ A o(p-V)p = (a—Blp/*) p - ;;VQ +vAp,
(11)

Egs. (10,11) are sufficient to capture the phenomena as-
sociated with linear density waves in a polar active liquid
relevant to our analysis. In that limit, the polarization
field itself defines the fluid velocity, so that the coupling
between the polarization field and the density gradient
has an effect analogous to that of a pressure gradient in
an equilibrium liquid.

Linear density waves for Toner-Tu liquids — For the
case a > 0, the Toner-Tu equations result in a steady
state of the fluid with spontaneous flow in the bulk, such
that p3 = |py|? = a/B. Although in the bulk, the spon-
taneous flow direction P, could be arbitrary, in physical
realizations of active liquids, the boundaries fix p,. For
example, in an open channel, p, is parallel to the chan-
nel walls. In the Lieb lattice geometry, we have solved
Egs. (10) and (11) for a sufficient time for the dynamics
to relax to a steady state. We find that this steady state,
plotted in Fig. 1a (also see Fig. S2 in the SI), has the

(

features of the spatial profile observed from our particle-
based simulations, although the particle-based simula-
tions lead to a smoother profile, Fig. 1b.

In the analysis performed for the density wave compu-
tations, we take a particularly simple form of the steady
state, based on the profile we observe. We postulate the
polarization has magnitude unity everywhere and is ori-
ented azimuthally, i.e., perpendicular to the vector con-
necting the position of the fluid to the nearest annulus
center. In the regions of overlap between annuli, we lin-
early interpolate between the two annular flow profiles.
This spatial profile is plotted in a large sample in Fig. 3a
of the main text.

Thus, given a spontaneous steady-state flow field py,
we expand 7(r,t) = p(r,t) — po(r) and p(r,t) = o(r,t) —
0o to find

Op+ (vopg - V)p = —vopoV - v+ DoV3p  (12)
v + Mg(pg - V)V = — (v1/po)Vp
—2a(v - Pg)Po + VV3v.

For the case of propagating waves, the right-hand side
can be decomposed as the sum of a dominant anti-
Hermitian matrix that governs wave dispersion and a
perturbatively small Hermitian matrix that governs wave
attenuation. As we are interested in the behavior of an
active fluid deep in the ordered phase, we have assumed
« to be constant. The p dependance of «, which leads
to additional dissipative terms, would be most significant
near the phase transition from an isotropic to a flowing
steady state. There are two notable differences for the
propagation of density waves in an active liquid compared
to a simple fluid: (1) the « term acts as an additional
dissipative term for sound in an active liquid, and (2) one
of the convection terms contains the coefficient A (# 1).
Due to this second difference, the equation of motion can
no longer be “Galilean boosted” into a different refer-
ence frame by replacing the lab-frame derivative d; by a
convective derivative.



To closely examine the mode structure in Egs. (12),
we split the vector v into components v and v, respec-
tively parallel and perpendicular to p,. Having in mind
the flow of active liquid inside narrow channel, we assume
that confinement strongly suppresses fluctuations in the
transverse direction and therefore assume that the den-
sity waves only propagate along the channel direction.
We therefore ignore the derivatives of p and p along the
direction perpendicular to p,. Under this assumption,
Egs. (12) reduce to:

Oip + ’Uopoaﬂp = —vopoauvu + Doaﬁp, (13)
at’l}” + )\poau’vu = —(’1)1/p0)5Hp — 20[1)” + uaﬁv”, (14)
01 + ApdvL = l/aﬁm_. (15)

Let us now consider Egs. (13-14) for the density and
the longitudinal velocity modes in an active liquid. We
can calculate the dispersion relation w(q) = w'(q)+iw” (q)
for density waves in active liquids in the limit ¢ <
¢/(Dg + v), where ¢ is the wavenumber of the density

W'(q) = vV qPvov1 — a2, (16)
w"(q) = || + (Do +v)q* /2 (17)

Two comments are in order. Firstly, due to spontaneous
flow, the sound-wave frequency generically, has a real
component, which is plotted in Fig. 1a of the main text,
and ¢ = ,/vov; is the speed of sound. We also note that
in the considered channel geometry the active fluid has
a single sound mode unlike unconfined polar liquids [23].
Secondly, in the limits |a|/c < ¢ < ¢/(Do + v), the
quality factor Q = w'/w” ~ ¢/(Dy + vq) is always much
larger that one, therefore waves can almost freely propa-
gate over a number of unit cells before being damped by
diffusion and orientational elasticity. A candidate for a
possible experimental realisation could be colloidal rollers
confined to micro channels [2]. For this system the elastic
constant is about v ~ 1072 m? /s, and translational dif-
fusion is subdominant. Taking a speeds of sound of the
order of the speed of the motile bodies ¢ ~ 1073m/s, and
q ~ 103m~" at the edge of the Brillouin zone (which cor-
respond to annuli of diameter ~ 1 mm), we find Q ~ 103.
Confined density waves should almost freely propagate.

Analogy with Schrédinger equation — Note that when
the dissipative components of the density wave equation
can be neglected, Eq. (12) may be recast as a single
wave equation. By applying the convective derivative
O + Mvo(po - V) to the continuity equation, Eq. (13),
and then substituting the velocity equation of motion,
Eq. (14), one obtains:

[0: + Xvo(Po - V)][0: +vo(po - V)]p = *VZp. (18)

The eigenvalue problem for the above wave equation has
solutions in terms of the frequency w of a time-dependent
oscillation p(x,t) = p(x,w)e™?. The corresponding equa-
tion has the form, provided that M = vopg/c < 1,

[°V? + w? — iw(A 4+ vo)pgy - V] 5 =0, (19)

[(V—iA)? +w?/c?] p=0, (20)

where A = w(\ + 1)vgpy/(2¢?). This shows that the
velocity field vgp, acts as an effective vector potential
for the propagation of density waves.

Scaling argument for penetration depth — From the
form of Eq. (20), we can deduce the following scaling ar-
gument for the penetration depth of a topological edge
state in the relevant limit vopg/c < 1. Consider the first
term, (V — iA)?, which shows the minimal coupling be-
tween density gradients and spontaneous flow [11]. The
penetration depth is a lengthscale that originates from
density gradients and therefore scales as £ ~ A™'. Fur-
thermore, A ~ vgpow/c? and depends on a characteristic
frequency w1 = c¢/a, where ¢ is the speed of sound and
a is a characteristic lengthscale of the material, i.e., the
lattice spacing. In addition, A is approximately the same
from one unit cell to the next. Combining these scaling
relations, ¢ ~ ac/(vopo). The length ¢ diverges as the
flow velocity goes to zero and, therefore, as the material
loses its bulk bandgap.

We also note that we expect and observe topological
edge states to be localized near the edge with an ex-
ponential profile, see Fig. 3d in the main text. To see
why we expect Eq. (20) to lead to exponentially localized
states, note that if we assume p ~ f(x/{), and the scaling
law derived above for ¢, ¢ ~ ac/(vopo), Eq. (20) predicts
f" ~ f, with a dimensionless proportionality constant.
An exponential profile satisfies this approximate scaling
form. Such a profile is a consequence of the fact that A
does not vary over lengthscales larger than a unit cell,
an argument that relies on the metamaterial structure of
the topological state. By contrast, in the quantum Hall
fluid, the frequency scale depends on the field strength
and A varies over large distances, which leads to both a
Gaussian profile of states in a Landau level as well as a
different scaling for the penetration depth [34].

Chern numbers — We establish the topological nature
of the active-liquid metamaterial by calculating (for the
Lieb-lattice spectrum) an integer-valued topological in-
variant called the Chern number associated with each
band, see [13]. The Chern number C,, is analogous to
the Euler characteristic of a closed surface with Gaus-
sian curvature. Using the Gauss-Bonnet theorem, we can
compute C), by integrating a curvature called the Berry
curvature By, (q) over a closed surface formed by the first
Brillouin zone (which by construction is periodic in both
directions):

1
Cn = 27T 87 Bn(Ql)d(L (21)
where B,,(q) = V x An(q), An(q) = i(ul)t - (Vqup) is

the Berry connection calculated from the ug eigenstate of
band n and wavenumber . For our discrete data set, we
use the gauge-choice-independent protocol described in
Ref. [37] to efficiently calculate the Chern number using
a coarse discretization of the first Brillioun zone.



COMSOL simulations — We solve Eq. (3) for both a
finite geometry and for a unit cell with Floquet bound-
ary conditions (i.e., periodic boundary conditions with an
additional phase factor e *®* where x is the vector con-
necting the corresponding parts of the two boundaries)
using COMSOL Multiphysics finite element analysis sim-
ulations on a highly refined mesh. Our simulations are a
modified version of the built-in physics “Pressure Acous-
tics, Frequency Domain” for the calculation of eigen-
modes using an Eigenfrequency study and the physics
“Pressure Acoustics, Transient” using a Time-Dependent
study for the supplementary movie. The boundary con-
ditions are Sound Hard Boundary (Wall) everywhere ex-
cept along the boundaries with periodic conditions. The
equations are modified to those explicitly written in the
SI and entered in the Weak Form required for Finite-
Element Simulations.

To obtain the dispersion relations shown in Fig. 2b-c,
we perform a sweep through the wavenumbers (g, qy)
along the MI'M cut and assign the appropriate phase
factors for (Floquet) boundary conditions across the
unit cell. Then, we solve the corresponding eigen-
value problem at each wavenumber and plot the corre-
sponding bands. We numerically obtain the solutions
in the form of frequencies w,(q) as well as the den-
sity eigenstates g(w,q), for which the density waves are
o(z,t) = d(w,q)e’@t=9%)  Unless otherwise noted, to
obtain good numerical accuracy, we use for the corre-

sponding background flow a simplified model with con-
stant |[v| = povg = 0.5¢, pointed along the azimuthal di-
rection of the corresponding annulus (see visualizations in
insets of Fig.3b-c). In the regions of annular overlap, we
patch the flow field using an interpolation that is linear
along the z-direction, and then normalize the result. For
Fig. 2d, we begin with a quasi-one-dimensional lattice ge-
ometry (also see Fig. 3d), and impose a phase factor only
along the periodic boundaries in the z-direction. Again,
the eigenvalues are plotted, and those forming a solid re-
gion corresponding to the bulk bands are shaded in blue.
For parts of Figures 2d and 3a-c, we use a finite geometry
and plot a single eigenmode located in the band gap that
contains topological states. The Supplementary Movie is
generated by taking frames with in-between time inter-
vals of approximately w™!, with many in-between time
steps for the simulation, which are determined automat-
ically by the COMSOL solver. The density excitations
are initialized to 0. The source of the density excitations
is chosen as the outer-most boundary of one of the annuli
at the edge. The source’s angular frequency w is chosen
to be within the band gap indicated in Fig. 2c¢-d, and is
~ 0.9¢/a = 0.9w;.

Data Availability Statement
The data that support the plots within this paper and
other findings of this study are available from the corre-
sponding author upon request.
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I. PARTICLE-BASED MODEL

We used a particle-based model as an illustrative example to check the steady-state flow that we obtained from
the Toner-Tu equations. We emphasize that the conclusions obtained in the main text are based on the continuum
Toner-Tu equations, which form a description that has a more general applicability than the specific particle-based
model presented below. We choose a continuous-time model that includes Vicsek-like alignment interactions and
repulsive interactions that prevent clustering [1, 2]. The position x; and velocity v; of the i*" particle is evolved using
a symplectic Euler integrator for Newton’s laws of motion with the force term

Fi=mv,=—yv;+Fo | Vi + Z vi/N
(%i,%;5) (S1)

+ sz‘U(\Xi — x|) + V/2vkBTE,(t),
&

where 7 is a friction coeflicient, m is the particle mass, and Fy is the active force such that vg = Fy/v. The neighbors
in the Fy term are denoted as (x;,x;) and include all particles x; within a distance R (= a/20) of x;, see Fig. S1.
We use a Yukawa potential U(r):

b

res”

U(r) =

(S2)

to account for excluded-volume effects, where k~! = R/6 sets the repulsion range, and b = 4 x 103F,/k? sets the

Yukawa coupling constant. The white-noise stochastic forcing term ¢;(t), where (¢;(£)¢;(#')) = 8(t — '), mimics
thermal fluctuations. The temperature is set by kg7 = 1073bk = 2 x 1072mv3. The nonlinear forcing term Fyv,
where v = v/|v|, breaks the equilibrium fluctuation-dissipation relation for this far-from-equilibrium system. The

overdamped limit is defined as the regime for which the velocity relaxation time 7, = m/~ is much smaller that the
characteristic oscillation time 7, associated with the interaction potential: 7, = y/mb~1p~—3, where p is the particle
density. Time integration is done using the following time step At = 10~°m /v, where m is the mass of an individual
particle.

Both the square and Lieb lattices have lattice spacing a = 120x~! and are implemented by confining particles in
overlapping annuli. A single annulus has an inner radius Ry, = %a and Royt = 2Ri,. The confining boundaries are
implemented using a steep one-sided harmonic repulsive potential %kwxg with k,, = 3.14 x 105y2 /m experienced by
all particles. The area fraction of particles is

NR?
R, —R?

out



where N = 167 is the number of particles per annulus. (We choose units in which m = 1, a = 6, and a/vy = 60.)
In the steady state, the flow for the k-th annulus is measured by the azimuthal component of the velocity field

v 1 iv 0 (S4)
0*’00 £ i k />

where 6y, is the azimuthal unit vector around the annulus center, and (...) denotes a time average over 8000 con-
figuration, with 1000 timesteps between subsequent configurations. vy = £1 for an ideally flowing system; the sign
indicates flow chirality. Two examples of steady states are plotted in Fig. S2 and the dependence of vy on ¢ within
the Lieb lattice is plotted in Fig. S3. At low area fraction, the particles undergo the alignment transition for their
velocities, whereas at high area fraction they jam. The flowing steady-state occurs over a wide range of intermediate
area fractions.
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[2] Levine, H., Rappel, W. J. & Cohen, I. Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101
(2001).

Fig. S1: One configuration of the particle-based simulation in a periodic geometry based on the Lieb lattice. For each
particle, the radius of the short-range repulsive interaction is indicated in green. For a few chosen particles, the radius of the
longer-range alignment interaction is indicated in pink. For some particle, their instantaneous velocity is indicated by a red
arrow.
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Fig. S2: The steady-state for the flow of a polar active liquid in active metamaterials for (a,c) square lattice and (b,d)
topological Lieb lattice, all obtained from molecular dynamics (MD) simulations. For both geometries we also reproduce parts
of Fig. 2 of the main text, showing the spatially-dependent flow within a single unit cell (c,d), with the color scale for the
azimuthal component of the flow field. Note that the average (po) is of the order of 0.3.

A

Fig. S3: (a) The average normalized azimuthal component vg/vo (measured relative to the center of each annulus) as a
function of particle density ¢ in the Lieb lattice geometry measured relative to the (large) radius of the alignment interaction
(see Methods, Fig. S1).
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Fig. S4: The band structure redrawn from Figure 2c of the main text, but with the computed Chern numbers indicated
alongside the sum of all of the Chern numbers for the bands below the current band. This sum counts the number of chiral
edge states in the gap. For the gap (dashed line) for which the chiral edge states were calculated in the quasi-one-dimensional
case, Figure 2d, Zizl C, =1, and the sum indeed corresponds to the one chiral edge state whose dispersion we compute.
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Fig. S5: The normalized density squared, (|§p|?) for the normal modes in Fig. 3b (red) and 3c (blue), averaged over squares
which are schematically shown in yellow at the bottom and which contain four annuli. In the bottom schematic, the position
of the square over which the average is taken is labeled by the index n and the black line indicates the domain wall, also shown
as a white dotted line in the inset for Figs. 3b-c. To perform the average, we take four of the annuli closest to the white dotted
line. In the topologically protected case, this weight stays approximately constant (with some fluctuations due to the fixed area
for averaging). By contrast, for the case in which the domain wall does not separate two topologically distinct states, Fig. 3c,
the weight does not stay constant. In that case, the normal mode couples heavily to the kink in the domain wall shape, and
does not conserve its weight along the domain wall.
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