490 research outputs found

    Fusing Structural and Functional MRIs using Graph Convolutional Networks for Autism Classification

    Get PDF
    Geometric deep learning methods such as graph convolutional networks have recently proven to deliver generalized solutions in disease prediction using medical imaging. In this paper, we focus particularly on their use in autism classification. Most of the recent methods use graphs to leverage phenotypic information about subjects (patients or healthy controls) as additional contextual information. To do so, metadata such as age, gender and acquisition sites are utilized to define intricate relations (edges) between the subjects. We alleviate the use of such non-imaging metadata and propose a fully imaging-based approach where information from structural and functional Magnetic Resonance Imaging (MRI) data are fused to construct the edges and nodes of the graph. To characterize each subject, we employ brain summaries. These are 3D images obtained from the 4D spatiotemporal resting-state fMRI data through summarization of the temporal activity of each voxel using neuroscientifically informed temporal measures such as amplitude low frequency fluctuations and entropy. Further, to extract features from these 3D brain summaries, we propose a 3D CNN model. We perform analysis on the open dataset for autism research (full ABIDE I-II) and show that by using simple brain summary measures and incorporating sMRI information, there is a noticeable increase in the generalizability and performance values of the framework as compared to state-of-the-art graph-based models

    The role of habit in compulsivity.

    Get PDF
    Compulsivity has been recently characterized as a manifestation of an imbalance between the brain׳s goal-directed and habit-learning systems. Habits are perhaps the most fundamental building block of animal learning, and it is therefore unsurprising that there are multiple ways in which the development and execution of habits can be promoted/discouraged. Delineating these neurocognitive routes may be critical to understanding if and how habits contribute to the many faces of compulsivity observed across a range of psychiatric disorders. In this review, we distinguish the contribution of excessive stimulus-response habit learning from that of deficient goal-directed control over action and response inhibition, and discuss the role of stress and anxiety as likely contributors to the transition from goal-directed action to habit. To this end, behavioural, pharmacological, neurobiological and clinical evidence are synthesised and a hypothesis is formulated to capture how habits fit into a model of compulsivity as a trans-diagnostic psychiatric trait.CM Gillan is supported by a Sir Henry Wellcome Postdoctoral Fellowship (101521/Z/12/Z).This is the final version of the article. It was first available from Elsevier via https://doi.org/10.1016/j.euroneuro.2015.12.03

    Predicting the naturalistic course in anxiety disorders using clinical and biological markers:a machine learning approach

    Get PDF
    BackgroundDisease trajectories of patients with anxiety disorders are highly diverse and approximately 60% remain chronically ill. The ability to predict disease course in individual patients would enable personalized management of these patients. This study aimed to predict recovery from anxiety disorders within 2 years applying a machine learning approach.MethodsIn total, 887 patients with anxiety disorders (panic disorder, generalized anxiety disorder, agoraphobia, or social phobia) were selected from a naturalistic cohort study. A wide array of baseline predictors (N = 569) from five domains (clinical, psychological, sociodemographic, biological, lifestyle) were used to predict recovery from anxiety disorders and recovery from all common mental disorders (CMDs: anxiety disorders, major depressive disorder, dysthymia, or alcohol dependency) at 2-year follow-up using random forest classifiers (RFCs).ResultsAt follow-up, 484 patients (54.6%) had recovered from anxiety disorders. RFCs achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of 0.67 when using the combination of all predictor domains (sensitivity: 62.0%, specificity 62.8%) for predicting recovery from anxiety disorders. Classification of recovery from CMDs yielded an AUC of 0.70 (sensitivity: 64.6%, specificity: 62.3%) when using all domains. In both cases, the clinical domain alone provided comparable performances. Feature analysis showed that prediction of recovery from anxiety disorders was primarily driven by anxiety features, whereas recovery from CMDs was primarily driven by depression features.ConclusionsThe current study showed moderate performance in predicting recovery from anxiety disorders over a 2-year follow-up for individual patients and indicates that anxiety features are most indicative for anxiety improvement and depression features for improvement in general

    Nitrogen uptake and remobilization from pre‑ and post‑anthesis stages contribute towards grain yield and grain protein concentration in wheat grown in limited nitrogen conditions

    Get PDF
    Background In wheat, nitrogen (N) remobilization from vegetative tissues to developing grains largely depends on genetic and environmental factors. The evaluation of genetic potential of crops under limited resource inputs such as limited N supply would provide an opportunity to identify N-efficient lines with improved N utilisation efficiency and yield potential. We assessed the genetic variation in wheat recombinant inbred lines (RILs) for uptake, partitioning, and remobilization of N towards grain, its association with grain protein concentration (GPC) and grain yield. Methods We used the nested association mapping (NAM) population (195 lines) derived by crossing Paragon (P) with CIMMYT core germplasm (P Ă— Cim), Baj (P Ă— Baj), Watkins (P Ă— Wat), and Wyalkatchem (P Ă— Wya). These lines were evaluated in the field for two seasons under limited N supply. The plant sampling was done at anthesis and physiological maturity stages. Various physiological traits were recorded and total N uptake and other N related indices were calculated. The grain protein deviation (GPD) was calculated from the regression of grain yield on GPC. These lines were grouped into different clusters by hierarchical cluster analysis based on grain yield and N-remobilization efficiency (NRE). Results The genetic variation in accumulation of biomass at both pre- and post-anthesis stages were correlated with grain-yield. The NRE significantly correlated with aboveground N uptake at anthesis (AGNa) and grain yield but negatively associated with AGN at post-anthesis (AGNpa) suggesting higher N uptake till anthesis favours high N remobilization during grain filling. Hierarchical cluster analysis of these RILs based on NRE and yield resulted in four clusters, efficient (31), moderately efficient (59), moderately inefficient (58), and inefficient (47). In the N-efficient lines, AGNa contributed to 77% of total N accumulated in grains, while it was 63% in N-inefficient lines. Several N-efficient lines also exhibited positive grain protein deviation (GPD), combining high grain yield and GPC. Among crosses, the P Ă— Cim were superior and N-efficient, while P Ă— Wya responded poorly to low N input

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Residual effects of esmirtazapine on actual driving performance: overall findings and an exploratory analysis into the role of CYP2D6 phenotype

    Get PDF
    INTRODUCTION: Esmirtazapine is evaluated as a novel drug for treatment of insomnia. PURPOSE: The present study was designed to assess residual effects of single and repeated doses of esmirtazapine 1.5 and 4.5 mg on actual driving in 32 healthy volunteers in a double-blind, placebo-controlled study. Treatment with single doses of zopiclone 7.5 mg was included as active control. METHODS: Treatments were administered in the evening. Driving performance was assessed in the morning, 11 h after drug intake, in a standardized on-the-road highway driving test. The primary study parameter was standard deviation of lateral position (SDLP), a measure of "weaving". All subjects were subjected to CYP2D6 phenotyping in order to distinguish poor metabolizers from extensive metabolizers of esmirtazapine. RESULTS: Overall, esmirtazapine 1.5 mg did not produce any clinically relevant change in SDLP after single and repeated dosing. Driving impairment, i.e., a rise in SDLP, did occur after a single-dose administration of esmirtazapine 4.5 mg but was resolved after repeated doses. Acute driving impairment was more pronounced after both doses of esmirtazapine in a select group of poor metabolizers (N = 7). A single-dose zopiclone 7.5 mg also increased SDLP as expected. CONCLUSION: It is concluded that single and repeated doses of 1.5 mg esmirtazapine are generally not associated with residual impairment. Single-dose administration of 4.5 mg esmirtazapine was associated with residual impairment that generally resolved after repeated administration. Exploratory analysis in a small group of poor CYP 2D6 metabolizers suggested that these subjects are more sensitive to the impairing effects of esmirtazapine on car driving
    • …
    corecore