419 research outputs found

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Superconductivity in Fullerides

    Full text link
    Experimental studies of superconductivity properties of fullerides are briefly reviewed. Theoretical calculations of the electron-phonon coupling, in particular for the intramolecular phonons, are discussed extensively. The calculations are compared with coupling constants deduced from a number of different experimental techniques. It is discussed why the A_3 C_60 are not Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates of the Coulomb pseudopotential μ\mu^*, describing the effect of the Coulomb repulsion on the superconductivity, as well as possible electronic mechanisms for the superconductivity are reviewed. The calculation of various properties within the Migdal-Eliashberg theory and attempts to go beyond this theory are described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to Review of Modern Physics, more information at http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Measurement of the Direct Photon Spectrum in Υ(1S)\Upsilon(1S) Decays

    Get PDF
    Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: RγΓ(Υ(1S)γgg)/Γ(Υ(1S)ggg)=(2.75±0.04(stat.)±0.15(syst.))R_{\gamma} \equiv \Gamma(\Upsilon(1S) \rightarrow \gamma gg)/\Gamma(\Upsilon(1S) \rightarrow ggg) = (2.75 \pm 0.04(stat.) \pm 0.15(syst.))%. From this ratio, we have determined the QCD scale parameter ΛMS\Lambda_{\overline{MS}} (defined in the modified minimal subtraction scheme) to be ΛMS=233±11±59\Lambda_{\overline{MS}}= 233 \pm 11 \pm 59 MeV, from which we determine a value for the strong coupling constant αs(MΥ(1S))=0.163±0.002±0.014\alpha_{s}(M_{\Upsilon(1S)}) = 0.163 \pm 0.002 \pm 0.014, or αs(MZ)=0.110±0.001±0.007\alpha_{s}(M_{Z}) = 0.110 \pm 0.001 \pm 0.007.Comment: 20 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target

    Get PDF
    We report measurements by the T2K experiment of the parameters θ23\theta_{23} and Δm322\Delta m^{2}_{32} governing the disappearance of muon neutrinos and antineutrinos in the three flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using 7.482×10207.482 \times 10^{20} POT in neutrino running mode and 7.471×10207.471 \times 10^{20} POT in antineutrino mode, T2K obtained, sin2(θ23)=0.510.07+0.08\sin^{2}(\theta_{23})=0.51^{+0.08}_{-0.07} and Δm322=2.530.13+0.15×103\Delta m^{2}_{32} = 2.53^{+0.15}_{-0.13} \times 10^{-3}eV2^{2}/c4^{4} for neutrinos, and sin2(θ23)=0.420.07+0.25\sin^{2}({\overline{\theta}}_{23})=0.42^{+0.25}_{-0.07} and Δm232=2.550.27+0.33×103{\Delta\overline{m}^2}_{32} = 2.55^{+0.33}_{-0.27} \times 10^{-3}eV2^{2}/c4^{4} for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.Comment: 8 pages, 2 figure

    Measurement of ¯νμ and νμ charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleus→μ−+X) and the first measurements of the cross section σ(¯νμ+nucleus→μ++X) and their ratio R(σ(¯ν)σ(ν)) at (anti) neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K ¯ν/ν-flux, for the detector target material (mainly carbon, oxygen, hydrogen and copper) with phase space restricted laboratory frame kinematics of θμ500  MeV/c. The results are σ(¯ν)=(0.900±0.029(stat)±0.088(syst))×10−39 and σ(ν)=(2.41±0.022(stat)±0.231(syst))×10−39 in units of cm2/nucleon and R(σ(¯ν)σ(ν))=0.373±0.012(stat)±0.015(syst)

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    First measurement of the νμ charged-current cross section on a water target without pions in the final state

    Get PDF
    This paper reports the first differential measurement of the charged-current interaction cross section of νμ on water with no pions in the final state. This flux-averaged measurement has been made using the T2K experiment’s off-axis near detector, and is reported in doubly differential bins of muon momentum and angle. The flux-averaged total cross section in a restricted region of phase space was found to be σ=(0.95±0.08(stat)±0.06(det syst)±0.04(model syst)±0.08(flux))×10−38  cm2/n
    corecore