6,621 research outputs found

    A dynamic spatial model of conflict escalation

    Get PDF
    In both historical and modern conflicts, space plays a critical role in how interactions occur over time. Despite its importance, the spatial distribution of adversaries has often been neglected in mathematical models of conflict. In this paper, we propose an entropy-maximising spatial interaction method for disaggregating the impact of space, employing a general notion of ‘threat’ between two adversaries. This approach addresses a number of limitations that are associated with partial differential equation approaches to spatial disaggregation. We use this method to spatially disaggregate the Richardson model of conflict escalation, and then explore the resulting model with both analytical and numerical treatments. A bifurcation is identified that dramatically influences the resulting spatial distribution of conflict and is shown to persist under a range of model specifications. Implications of this finding for real-world conflicts are discussed

    A pH‐Switchable Triple Hydrogen‐Bonding Motif

    Get PDF
    A stimuli responsive linear hydrogen bonding motif, capable of in situ protonation and deprotonation, has been investigated. The interactions of the responsive hydrogen bonding motif with complementary partners were examined through a series of 1H NMR experiments, revealing that the recognition preference of the responsive hydrogen bonding motif in a mixture can be switched between two states

    Substrate Wettability Influences Internal Jet Formation and Mixing during Droplet Coalescence

    Get PDF
    The internal dynamics during the axisymmetric coalescence of an initially static free droplet and a sessile droplet of the same fluid are studied using both laboratory experiments and numerical simulations. A high-speed camera captured internal flows from the side, visualized by adding a dye to the free droplet. The numerical simulations employ the volume of fluid method, with the Kistler dynamic contact angle model to capture substrate wettability, quantitatively validated against the image-processed experiments. It is shown that an internal jet can be formed when capillary waves reflected from the contact line create a small tip with high curvature on top of the coalesced droplet that propels fluid toward the substrate. Jet formation is found to depend on the substrate wettability, which influences capillary wave reflection; the importance of the advancing contact angle subordinated to that of the receding contact angle. It is systematically shown via regime maps that jet formation is enhanced by increasing the receding contact angle and by decreasing the droplet viscosity. Jets are seen at volume ratios very different from those accepted for free droplets, showing that a substrate with appropriate wettability can improve the efficiency of fluid mixing

    Translating the complexities of flood risk science using KEEPER - a knowledge exchange exploratory tool for professionals in emergency response

    Get PDF
    Within flood risk management (FRM) decision making, there is a growing interest in participatory approaches to engage and integrate stakeholder expertise. Decision support tools are becoming common features in the FRM ‘toolkit’, yet there is a limited application of participatory methodologies in the construction of such tools. This paper reports on completed FRMRC research (Flood Risk Management Research Consortium, UK http://www.floodrisk.org.uk/) and the construction of a geographic information system-based flood risk assessment tool, KEEPER – a Knowledge Exchange Exploratory tool for Professionals in Emergency Response. An iterative methodology was used to engage emergency professionals throughout the research process, allowing a mixing of scientific and professional expertise in the co-production of KEEPER. KEEPER was both instrumental in facilitating participation and knowledge exchange, and informing recommendations for future tools in practice. This paper argues that participation is both essential for supporting pragmatic flood research and as a means of enhancing communication across traditionally divided communities

    Assembly of Miscible Supramolecular Network Blends Using DDA·AAD Hydrogen-Bonding Interactions of Pendant Side-Chains

    Get PDF
    The formation of polymer blends can result in materials with superior properties through combination of homo- or co-polymers with divergent functionalities. However, the contrasting physical properties of different polymers often result in phase separation. Herein we induce miscible blend formation of immiscible poly(methyl methacrylate) and polystyrene polymers through triple donor–donor–acceptor and acceptor–acceptor–donor (DDA·AAD) hydrogen bonding between complementary heterodimers on pendent side-chains. RAFT polymerization is used to synthesize a series of poly (methylmethacrylate) and polystyrene co-polymers bearing complementary side-chain hydrogen bonding motifs. Mixing of these polymers promoted miscible blend formation as demonstrated by atomic force microscopy and differential scanning calorimetry. The effectiveness of blend formation was shown to depend upon the extent of incorporation of hydrogen-bonding motif bearing co-monomer; lower degrees of incorporation lead to ineffective blending, whereas higher degree of incorporation, suppress phase separation and promote miscibility

    A comparison of two astronomical tuning approaches for the Oligocene-Miocene Transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    Get PDF
    Astronomical tuning of sediment sequences requires both unambiguous cycle-pattern recognition in climate proxy records and astronomical solutions, and independent information about the phase relationship between these two. Here we present two astronomically tuned age models for the Oligocene-Miocene Transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning approaches have on astronomically calibrated ages and the geologic time scale. These age models are based on different phase-assumptions between climate proxy records and eccentricity: the first age model is based on an inverse and in-phase assumption of CaCO3 weight (wt %) to Earth's orbital eccentricity, the second age model is based on an inverse and in-phase assumption of benthic foraminifer stable carbon isotope ratios (δ13C) to eccentricity. The phase-assumptions that underpin these age models represent two end-members on the range of possible tuning options. To independently test which tuned age model and tuning assumptions are correct, we assign their ages to magnetostratigraphic reversals identified in anomaly profiles. Subsequently we compute tectonic plate-pair spreading rates based on the tuned ages. These alternative spreading rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n–C6Cn.1r, which are not based on astronomical tuning in the latest iteration of the Geologic Time Scale. Furthermore, it provides independent evidence that the relatively large (several 10,000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity, constitute a real feature of the Oligocene-Miocene climate system and carbon cycle. The age constraints from Site U1334 thus provide independent evidence that the delayed responses of the Oligocene-Miocene climate-cryosphere system and carbon cycle resulted from increased nonlinear feedbacks to astronomical forcing

    Modeling payback from research into the efficacy of left-ventricular assist devices as destination therapy

    Get PDF
    Objectives: Ongoing developments in design have improved the outlook for left-ventricular assist device (LVAD) implantation as a therapy in end-stage heart failure. Nevertheless, early cost-effectiveness assessments, based on first-generation devices, have not been encouraging. Against this background, we set out (i) to examine the survival benefit that LVADs would need to generate before they could be deemed cost-effective; (ii) to provide insight into the likelihood that this benefit will be achieved; and (iii) from the perspective of a healthcare provider, to assess the value of discovering the actual size of this benefit by means of a Bayesian value of information analysis. Methods: Cost-effectiveness assessments are made from the perspective of the healthcare provider, using current UK norms for the value of a quality-adjusted life-year (QALY). The treatment model is grounded in published analyses of the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial of first-generation LVADs, translated into a UK cost setting. The prospects for patient survival with second-generation devices is assessed using Bayesian prior distributions, elicited from a group of leading clinicians in the field. Results: Using established thresholds, cost-effectiveness probabilities under these priors are found to be low (.2 percent) for devices costing as much as £60,000. Sensitivity of the conclusions to both device cost and QALY valuation is examined. Conclusions: In the event that the price of the device in use would reduce to £40,000, the value of the survival information can readily justify investment in further trials

    Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    Get PDF
    ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot

    Archiving Software Surrogates on the Web for Future Reference

    Full text link
    Software has long been established as an essential aspect of the scientific process in mathematics and other disciplines. However, reliably referencing software in scientific publications is still challenging for various reasons. A crucial factor is that software dynamics with temporal versions or states are difficult to capture over time. We propose to archive and reference surrogates instead, which can be found on the Web and reflect the actual software to a remarkable extent. Our study shows that about a half of the webpages of software are already archived with almost all of them including some kind of documentation.Comment: TPDL 2016, Hannover, German
    corecore