10 research outputs found

    A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea

    Get PDF
    Highlights - We rated novel methods regarding their ability to improve the Baltic Sea monitoring. - Methods were assessed with respect to their costs and applicability. - All methods can potentially increase data resolution or monitor novel ecosystem elements. - We recommend several novel methods for the Baltic status assessment.A multitude of anthropogenic pressures deteriorate the Baltic Sea, resulting in the need to protect and restore its marine ecosystem. For an efficient conservation, comprehensive monitoring and assessment of all ecosystem elements is of fundamental importance. The Baltic Marine Environment Protection Commission HELCOM coordinates conservation measures regulated by several European directives. However, this holistic assessment is hindered by gaps within the current monitoring schemes. Here, twenty-two novel methods with the potential to fill some of these gaps and improve the monitoring of the Baltic marine environment are examined. We asked key stakeholders to point out methods likely to improve current Baltic Sea monitoring. We then described these methods in a comparable way and evaluated them based on their costs and applicability potential (i.e., possibility to make them operational). Twelve methods require low to very low costs, while five require moderate and two high costs. Seventeen methods were rated with a high to very high applicability, whereas four methods had moderate and one low applicability for Baltic Sea monitoring. Methods with both low costs and a high applicability include the Manta Trawl, Rocket Sediment Corer, Argo Float, Artificial Substrates, Citizen Observation, Earth Observation, the HydroFIAÂźpH system, DNA Metabarcoding and Stable Isotope Analysis

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1^{−1} (9.9 ± 0.5 GtC yr−1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr−1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr−1^{−1} (2.5 ± 0.1 ppm yr−1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr−1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr−1^{−1}, with a BIM_{IM} of −0.6 GtC yr−1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Distribution of cyanobacteria blooms in the Baltic Sea

    No full text

    Bottenmonterade mĂ€tsystem 2020–2021

    No full text
    För att uppskatta dynamiken i den marina miljön genom miljöövervakning och för att ta fram bra beslutsunderlag till Ă„tgĂ€rder i havet sĂ„ behövs mĂ€tningar med hög upplösning i tid och rum. Dagens mĂ€tprogram utförs traditionellt med lĂ€gre upplösning i tid, i princip mĂ„nadsvisa provtagningar men med relativt hög rumslig upplösning pĂ„ olika stationer i svenska vatten.MĂ„let med projektet Ă€r att utvĂ€rdera kostnadseffektiva mĂ€tsystem med kapacitet att mĂ€ta viktiga oceanografiska variabler med hög upplösning i tid som komplement till nuvarande mĂ€tprogram. I projektet ingĂ„r tre positioner med bottenmonterade system i omrĂ„den dĂ€r det kan rĂ„da stor variation pĂ„ korta tidsskalor för variabler som temperatur, salt, syre och ström. De bottenmonterade mĂ€tsystemen har mĂ€tt temperatur, salinitet och syre vid stationerna L9, Hanöbukten och Understen. Vid Hanöbukten och Understen har Ă€ven ström mĂ€tts. Parametrarna har samlats in med hög upplösning i tid, i snitt var 20:e minut.De bottenmonterade mĂ€tsystemen planerades att sĂ€ttas ut med R/V Svea och byte av mĂ€tsystemen planerades till varje halvĂ„r. I en utvĂ€rdering av projektet, 1,5 Ă„r efter första utsĂ€ttningen, kan man konstatera att det var svĂ„rt att kombinera R/V Sveas schemalagda veckor med bra vĂ€der för utsĂ€ttning och upptag av bottenmĂ€tsystemen. Möjligheten för byte av bottenmĂ€tsystem Ă€r mycket liten dĂ„ R/V Svea oftast bara passerar förbi varje position för bottenmĂ€tsystemen en gĂ„ng under SMHIs utsjöexpedition. Vid ett tillfĂ€lle uppstod ett tekniskt problem som bidrog till att L9-riggen slet sig inför upptag i juni 2021 samt att bottenmĂ€tystemet vid Hanöbukten var borta och inte kunde hittas i oktober 2021, trots upprepade försök. Hanöbukten Ă€r en intressant station, men problematisk för bottensystem dÄ omrĂ„det har mycket fiske och framförallt trĂ„lande fartyg.Resultaten frĂ„n projektet visar att samtliga bottenmĂ€tsystem fĂ„ngar en stor variation och viktig dynamik i temperatur, salinitet, syre och strömförhĂ„llanden som den traditionella mĂ„nadsvisa provtagningen inte lyckas fĂ„nga. MĂ„nadsvisa mĂ€tningar behöver kompletteras med högupplöst data för att oceanografiska hĂ€ndelser, med potentiella viktiga effekter i den marina miljön, skall Ă„skĂ„dliggöras tydligt. SMHIs analys av data i denna rapport visar att bottenmonterade mĂ€tsystem har stor potential för att förstĂ„ processer som sker pĂ„ kortare tidsskala i den marina miljön. Till exempel kan de anvĂ€ndas för att identifiera omrĂ„den med korta perioder med syrebrist som har stark negativ inverkan pĂ„ bottenfauna. Dessa mĂ€tsystem ger Ă€ven vĂ€rdefulla och kostnadseffektiva data som kompletterar de data som insamlas inom befintliga mĂ€tprogram. I rapporten fastslĂ„r SMHI att bottenmĂ€tsystemen vid L9 Laholmsbukten och Understen bör lĂ„ngsiktigt inkluderas i den nationella miljöövervakningen. SMHI rekommenderar att nĂ€sta steg Ă€r att testa och utvĂ€rdera profilerande flöten, s.k. Argo floats, i lĂ€mpliga omrĂ„den av Östersjö

    Bottenmonterade mĂ€tsystem 2020–2021

    No full text
    För att uppskatta dynamiken i den marina miljön genom miljöövervakning och för att ta fram bra beslutsunderlag till Ă„tgĂ€rder i havet sĂ„ behövs mĂ€tningar med hög upplösning i tid och rum. Dagens mĂ€tprogram utförs traditionellt med lĂ€gre upplösning i tid, i princip mĂ„nadsvisa provtagningar men med relativt hög rumslig upplösning pĂ„ olika stationer i svenska vatten.MĂ„let med projektet Ă€r att utvĂ€rdera kostnadseffektiva mĂ€tsystem med kapacitet att mĂ€ta viktiga oceanografiska variabler med hög upplösning i tid som komplement till nuvarande mĂ€tprogram. I projektet ingĂ„r tre positioner med bottenmonterade system i omrĂ„den dĂ€r det kan rĂ„da stor variation pĂ„ korta tidsskalor för variabler som temperatur, salt, syre och ström. De bottenmonterade mĂ€tsystemen har mĂ€tt temperatur, salinitet och syre vid stationerna L9, Hanöbukten och Understen. Vid Hanöbukten och Understen har Ă€ven ström mĂ€tts. Parametrarna har samlats in med hög upplösning i tid, i snitt var 20:e minut.De bottenmonterade mĂ€tsystemen planerades att sĂ€ttas ut med R/V Svea och byte av mĂ€tsystemen planerades till varje halvĂ„r. I en utvĂ€rdering av projektet, 1,5 Ă„r efter första utsĂ€ttningen, kan man konstatera att det var svĂ„rt att kombinera R/V Sveas schemalagda veckor med bra vĂ€der för utsĂ€ttning och upptag av bottenmĂ€tsystemen. Möjligheten för byte av bottenmĂ€tsystem Ă€r mycket liten dĂ„ R/V Svea oftast bara passerar förbi varje position för bottenmĂ€tsystemen en gĂ„ng under SMHIs utsjöexpedition. Vid ett tillfĂ€lle uppstod ett tekniskt problem som bidrog till att L9-riggen slet sig inför upptag i juni 2021 samt att bottenmĂ€tystemet vid Hanöbukten var borta och inte kunde hittas i oktober 2021, trots upprepade försök. Hanöbukten Ă€r en intressant station, men problematisk för bottensystem dÄ omrĂ„det har mycket fiske och framförallt trĂ„lande fartyg.Resultaten frĂ„n projektet visar att samtliga bottenmĂ€tsystem fĂ„ngar en stor variation och viktig dynamik i temperatur, salinitet, syre och strömförhĂ„llanden som den traditionella mĂ„nadsvisa provtagningen inte lyckas fĂ„nga. MĂ„nadsvisa mĂ€tningar behöver kompletteras med högupplöst data för att oceanografiska hĂ€ndelser, med potentiella viktiga effekter i den marina miljön, skall Ă„skĂ„dliggöras tydligt. SMHIs analys av data i denna rapport visar att bottenmonterade mĂ€tsystem har stor potential för att förstĂ„ processer som sker pĂ„ kortare tidsskala i den marina miljön. Till exempel kan de anvĂ€ndas för att identifiera omrĂ„den med korta perioder med syrebrist som har stark negativ inverkan pĂ„ bottenfauna. Dessa mĂ€tsystem ger Ă€ven vĂ€rdefulla och kostnadseffektiva data som kompletterar de data som insamlas inom befintliga mĂ€tprogram. I rapporten fastslĂ„r SMHI att bottenmĂ€tsystemen vid L9 Laholmsbukten och Understen bör lĂ„ngsiktigt inkluderas i den nationella miljöövervakningen. SMHI rekommenderar att nĂ€sta steg Ă€r att testa och utvĂ€rdera profilerande flöten, s.k. Argo floats, i lĂ€mpliga omrĂ„den av Östersjö

    Global Carbon Budget 2022

    Get PDF
    International audienceAbstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Global Carbon Budget 2022

    No full text
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ.For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Global Carbon Budget 2022

    No full text
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the year 2021, EFOS increased by 5.1% relative to 2020, with fossil emissions at 10.1 +/- 0.5 GtC yr(-1) (9.9 +/- 0.5 GtC yr(-1) when the cement carbonation sink is included), and ELUC was 1.1 +/- 0.7 GtC yr(-1),for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 +/- 0.8 GtC yr 1 (40.0 +/- 2.9 GtCO(2)). Also, for 2021, G(ATM) was 5.2 +/- 0.2 GtC yr(-1) (2.5 +/- 0.1 ppm yr(-1)), S-OCEAN was 2.9 +/- 0.4 GtC yr(-1), and SLAND was 3.5 +/- 0.9 GtC yr(-1), with a B-IM of 0.6 GtC yr(-1) (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 +/- 0.1 ppm. Preliminary data for 2022 suggest an increase in E-FOS relative to 2021 of +1.0% (0.1% to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50% above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2021, but discrepancies of up to 1 GtC yr(-1) persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Global Carbon Budget 2021

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data-products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gases inventories, supporting the assessment of collective countries’ climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1 and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021, suggest a rebound in EFOS relative to 2020 of +4.9 % (4.1 % to 5.7 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra- tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2020; Friedlingstein et al., 2019; Le QuĂ©rĂ© et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021)
    corecore