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A multitude of anthropogenic pressures deteriorate the Baltic Sea, resulting in the
need to protect and restore its marine ecosystem. For an efficient conservation,
comprehensive monitoring and assessment of all ecosystem elements is of fundamental
importance. The Baltic Marine Environment Protection Commission HELCOM
coordinates conservation measures regulated by several European directives. However,
this holistic assessment is hindered by gaps within the current monitoring schemes.
Here, twenty-two novel methods with the potential to fill some of these gaps and
improve the monitoring of the Baltic marine environment are examined. We asked key
stakeholders to point out methods likely to improve current Baltic Sea monitoring. We
then described these methods in a comparable way and evaluated them based on
their costs and applicability potential (i.e., possibility to make them operational). Twelve
methods require low to very low costs, while five require moderate and two high costs.
Seventeen methods were rated with a high to very high applicability, whereas four
methods had moderate and one low applicability for Baltic Sea monitoring. Methods
with both low costs and a high applicability include the Manta Trawl, Rocket, Sediment
Corer, Argo Float, Artificial Substrates, Citizen Observation, Earth Observation, the
HydroFIA R©pH system, DNA Metabarcoding and Stable Isotope Analysis.

Keywords: Baltic Sea Action Plan, Marine Strategy Framework Directive, Water Framework Directive, data
acquisition, marine management
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HIGHLIGHTS

- We rated novel methods regarding their ability to improve the
Baltic Sea monitoring.

- Methods were assessed with respect to their costs
and applicability.

- All methods can potentially increase data resolution or
monitor novel ecosystem elements.

- We recommend several novel methods for the Baltic status
assessment.

INTRODUCTION

The unique Baltic Sea ecosystem is in critical condition due to
strong anthropogenic pressures, therefore, it urgently requires
protection and restoration (Andersen et al., 2015; HELCOM,
2017). As one of the largest brackish water bodies worldwide,
the Baltic Sea’s most distinguishing feature is a pronounced
salinity gradient. Marine and freshwater species coexist and
interact, creating a unique but sensitive biological community
(HELCOM, 2016). The Baltic Sea is shallow with a low water
exchange rate with other marine water bodies, which makes
it especially vulnerable to human impacts (Szymczychta et al.,
2019). Due to effluents draining from nine countries into its
basin, main environmental pressures include eutrophication
and contamination. In consequence, areas with low oxygen
or even anoxic conditions are expanding (Gustafsson et al.,
2012; Carstensen et al., 2014). In addition, the ecosystem
is highly impaired by marine litter, non-indigenous species,
underwater noise, fishing, as well as habitat disturbance and
loss (Andersen et al., 2015). Climate change already reduces
the extent and duration of ice cover in the Northern parts,
as well as increases riverine freshwater inflow (HELCOM,
2018a). The critical condition of the Baltic Sea calls for
profound mitigation actions as stipulated by the present
environmental legislation.

Several European directives and international conventions
address the protection of the Baltic Sea. The most important
directives are the Marine Strategy Framework Directive (MSFD;
European Commission, 2008) and the Water Framework
Directive (WFD; European Commission, 2000). The common
aim of these directives is to achieve a good status of the Baltic
Sea. “Status” refers to the qualitative condition of the ecosystem,
which is classified as good if it deviates only slightly from near-
natural conditions (European Commission, 2000, 2008). Further
relevant legislations are the Habitats Directive (92/43/EEC),
the Birds Directive (2009/147/EC), the Common Fisheries
Policy (Regulation EU No 1380/2013) and the regulation on
invasive alien species (Regulation EU No 1143/2014). The
implementation of the directives is regionally coordinated
by the Baltic Marine Environment Protection Commission
HELCOM (i.e., “Helsinki Commission”). This intergovernmental
organisation has the aim to protect the Baltic Sea, conserve
its habitats and biodiversity and ensure sustainable use of its
resources (HELCOM, 2018a). Working with an ecosystem-based
approach, the understanding of anthropogenic pressures and

their impacts on the marine environment and human well-
being are fundamental (Söderström and Kern, 2017). HELCOM
established the Baltic Sea Action Plan (BSAP; Backer et al., 2010)
as a joint programme to protect the Baltic Sea and restore the
good status of its marine environment by 2021 (HELCOM, 2007).

For an efficient protection and restoration of the Baltic Sea,
comprehensive monitoring of all its ecosystem elements is of
fundamental importance. Monitoring comprises the acquisition
of biological, chemical, physical, hydrological and morphological
data of the ecosystem to assess its status (Mack et al., 2019).
The assessment of the Baltic Sea’s status is following an
indicator-based approach (HELCOM, 2018a). Indicators address
specific measurable attributes of selected ecosystem elements,
allowing to monitor spatial or temporal changes of these
elements. Several indicators are defined and grouped into
eleven thematic categories addressing characteristic ecosystem
features and functions, so-called “descriptors” within the MSFD
(Zampoukas et al., 2012).

The current monitoring of the Baltic Sea, however, reveals
significant gaps, which conceivably prevent a holistic assessment
and impede adequate conservation of the Baltic Sea. Five main
gaps were identified by Emmerson et al. (2019) and Kahlert
et al. (2020), three of which relate to insufficiently monitored
and lacking indicators (i–iii), while two relate to regulation and
coordination (iv–v):

(i) Insufficient monitoring of existing indicators in space
and time, which especially applies to oxygen conditions,
phytoplankton, zooplankton, benthic habitats and species,
and the monitoring of mobile species.

(ii) The lack of indicators that adequately reflect the
descriptors of the MSFD, including food webs,
sea-floor integrity, contaminants, marine litter, and
underwater noise/energy.

(iii) Ecosystem elements and drivers of change, which are
not monitored so far, including climate change and
ecosystem services.

(iv) Insufficient regulations on data handling or storage, in
particular regarding some descriptors such as biodiversity
(i.e., benthic habitats and species), non-indigenous
species, bycatch, hazardous substances, and marine litter.

(v) The lack in coordination of the monitoring between
countries, which especially applies for the descriptors
mentioned in the previous gap.

These gaps arise from various circumstances: Traditional
methods require relatively high efforts regarding costs and
time, and therefore cannot be conducted as often as necessary
to meet the data requirements regarding spatio-temporal
resolution and coverage. These traditional methods include
manual water/sediment sampling from research vessels, sampling
and observation by trained divers, manned aircraft surveys
or the morphological identification of sampled organisms. An
insufficient development of measurable attributes of existing
and emerging ecosystem threats leads to a lack in indicators,
ecosystem elements or descriptors monitoring. For instance,
food webs are currently assessed by proxies like nutritional
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state, growth rate and size structure of specific organisms, but
a straightforward indicator describing the food web length and
stability was not developed so far. Technological advances and
associated high data volumes evolve faster than data management
strategies, resulting in the lack of central data management
systems. Furthermore, a lack of coordination results from
differing national and international legislation (Birk et al., 2012).

To fill these gaps, novel monitoring methods can be
implemented. In this investigation, we define as “novel” those
methods which are not yet in general use or applied to some
Baltic Sea regions, as well as methods which have been developed
recently. Several novel methods have been developed to facilitate
autonomous acquisition of real-time data, increased spatial and
temporal data resolution and the assessment of novel indicators,
ecosystem elements or descriptors (Danovaro et al., 2016). A
good example for the integration of novel methods is the use
of the HELCOM chlorophyll-a indicator for the assessment
of eutrophication status (HELCOM, 2018b). The indicator
combines data from traditional research vessel-based sampling
with Earth Observation and FerryBox systems. It was used in
the latest status report to assess the eutrophication effects in the
off-shore areas of the Baltic Sea (HELCOM, 2018c). Another
example is Earth Observation (EO) that provides near real-
time information on water quality parameters and surface water
temperature. Some Baltic countries, e.g. Finland, already utilise
these observations on daily level in monitoring programmes and
also as complementary material for WFD reporting (Attila et al.,
2018). The efforts by several EU countries for advancing the
use of EO for WFD were summarised in a recent White Paper
(Papathanaopoulou et al., 2019). However, to make a monitoring
method operational, it should be operationally feasible and
at a reasonable cost. Yet, sometimes a new method is not
always transferable to routine monitoring contexts due to several
constraints such as the inaccessibility to the equipment required
for sample collection or preservation. Also, the study of the cost-
efficiency of monitoring methods is not very usual (Abramic et al.,
2014; Bellanger and Levrel, 2017; Aylagas et al., 2018).

In this context, as part of the BONUS FUMARI project
(”Future marine assessment and monitoring of the Baltic”; 2018–
2020)1, which aims to propose a renewed monitoring system of
the Baltic Sea marine environment, we reviewed novel methods
with the potential to enhance the HELCOM monitoring of the
Baltic. We identified methods suited to fill the monitoring gaps
(i)– (iii) listed above (as these gap types are directly related
to monitoring practices) and rated their costs and applicability
potential (i.e., possibility to make them operational) for the
Baltic Sea monitoring. The methods offer an improvement
in comparison to the traditional methods and might replace
or supplement them in a future monitoring system. In the
methodology section, we describe the procedure of method
identification and rating. In the results and discussion section,
each method is classified, shortly described and rated based
on its costs and applicability for the marine monitoring. In
conclusion, the ability of methods to fill the main gaps is

1https://www.syke.fi/BONUS_FUMARI/

assessed. The results from this research can be applied to other
regional seas worldwide.

MATERIALS AND METHODS

Identification of Novel Methods
To increase the overall impact, our BONUS FUMARI project
follows an end-user-centric approach, integrating suggestions
from key stakeholders in environmental management (i.e.,
academic researchers, monitoring coordinators or field
biologists). Novel monitoring methods were identified by
scanning scientific projects, publications and conducting
stakeholder surveys. This comprehensive collation was then
examined to retain only methods, which fulfilled the following
five criteria: (1) technology readiness level of seven or higher
(European Commission, 2014), (2) comprehensive and stand-
alone techniques (excluding sensors or analysers depending on a
deployment system), (3) filling a gap in the current monitoring,
(4) “novel” and not in general use, and (5) evaluated as cost-
efficient in terms of their cost-benefit-ratio. For this compilation
we considered scientific research projects [all BONUS projects
since 2010 and the finished and ongoing projects listed in the
Technical guidance on monitoring for the MSFD (JRC, 2014)],
scientific publications (JRC, 2013; Danovaro et al., 2016; Filipe
et al., 2019; Lehikoinen et al., 2019), and stakeholder suggestions.
Stakeholders working in the field of environmental management
and research in the Baltic countries were asked for shortcomings
in the Baltic monitoring to assess the good status of the region
regarding the directives MSFD, WFD and BSAP, and for novel
methods with the potential to fill these. This was done during
two enquiries from October 2018 to May 2019 and we received
42 responses (see Supplementary Material A).

Description and Rating of Novel Methods
All methods were described and evaluated in a standardised
way. We specified their potential to add to a reference
framework/programme (MSFD, BSAP and WFD), the monitored
quality elements and the traditional methods potentially replaced
or supplemented by the novel method. Furthermore, we
described the general operating principle of the method and its
application for the routine monitoring.

For evaluating the costs of a method, we differentiated
between investment costs and monitoring costs. For evaluating
a methods’ applicability, we assessed reliability, environmental
impact, added value, limitations and required expertise. These
criteria were developed including approaches of JRC (2013),
Nygård et al. (2016), and Hering et al. (2018). The novel methods
were rated by assigning scores ranging from “−−.” i.e., “very
low” to “++,” i.e., “very high” to each of the evaluation criteria. It
should be notes that different evaluation criteria were rated using
a different range of these scores, depending on their feasibility
(Table 1). For instance, the criterion “added value” could not
score negative and “limitations” could not score positive. Overall
cost and applicability rating was done by averaging the grades for
the single ratings. Monitoring costs were given a higher weight
(2:1) than investment costs to emphasise annual running costs
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TABLE 1 | Evaluation criteria and rating scores of the novel methods.

Rating Investment costs (in k€) Monitoring costs (in k€) Reliability Environmental impact Added value Limitations Required expertise

++ ≤ 1 ≤ 1 | | Very high | |

+ 1–10 1–50 High Beneficial High | Low

0 10–50 50–100 | None | None Moderate

− 50–100 100–150 Low Low | Moderate High

−− > 100 > 50 | Moderate | High |

In the first column, the quantitative rating is shown, assigned to scores from “++” as best to “−−” as worst rating.

over one-time investments. The final rating of the methods can
be found in Table 2.

Investment costs were defined as one-time investments for
equipment and personnel training. This comprised the costs for
the monitoring device or deployment system, including necessary
equipment like standard sensors or sampling devices, and the
expenses for personnel training (personnel costs were set to
70 € per hour). For citizen observations this included costs to
start web services and management activities. For remote sensing
methods, we also included the costs for the development of a
data management system. Since the investment costs of most
methods depended on several parameters, like number and type
of included sensors or the place of application, the costs were
mainly estimated based on expert knowledge. Cost assignments
followed criteria put forth by the Joint Research Centre (JRC,
2013; Table 1).

Monitoring costs were defined as the running costs of
monitoring, i.e., costs incurring after the initial set up. They
include consumables, personnel working time, maintenance and,
in case of citizen observations and remote sensing methods, data
handling. Due to data availability, we first collected monitoring
costs in various dimensions, ranging from the costs for a single
monitoring campaign to the costs for an annual monitoring of
a specific transect/area. Based on these, we estimated the annual
monitoring costs for the whole Baltic Sea. These depend on the
monitoring objective and therefore, the costs are given under
specific assumptions (see Supplementary Material B). Since
most of the methods collect data on multiple quality elements
at the same time, we calculated the monitoring costs for a single
quality element to allow for cost comparisons between methods.
For research vessel-dependent methods, we did not include ship
costs like fuel or rent.

In our cost analysis, we did not take the possibility of sharing
facilities/instruments or cooperating the execution among
institutes into account. This can potentially reduce investment
and monitoring costs and efforts by maximising the use of
resources. Furthermore, analysis protocols can be homogenised,
which reduces the need for interlaboratory calibrations
(JRC, 2013).

Reliability was assessed based on the failure safety of the
method itself and the precision of acquired data in comparison
to the traditional methods (see Supplementary Material B).
Reliability of the methods was “high,” when resulting data had
an improved reliability. This also applied, when the precision of
acquired data is comparable to data acquired with the traditional
method, but due to the greater amount of data, the reliability

can be regarded higher. A high default rate and therefore low
reliability of the method was assessed as “low.”

Environmental impact of the methods was rated ranging from
“beneficial” to “moderate.” Hereby, “beneficial” means a positive
impact on the environment, e.g., by removing litter from the
beaches. A “low” impact is caused by small organismic sample
sizes and damages to the physical habitats, e.g., by anchoring
devices to the sea floor. Methods causing damages of the physical
habitats or/and lethal sample treatment of a relatively big sample
size were rated with a “moderate” impact.

Added value describes the type of novelty, which a method
adds to the routine monitoring. It was rated as “high” for methods
with higher spatial and/or temporal data resolution, e.g., due to
their autonomous measurement, and therefore, filling gap (i).
A “very high” added value was assigned to methods including
the monitoring of novel quality elements, ecosystem elements or
descriptors and therefore, filling gaps (ii) and (iii). Furthermore,
methods with an added social or environmental value, e.g., by
rising the environmental awareness of the population, were rated
as “very high."

Limitations describe disadvantages and shortcomings of a
method. We rated limitations as “none,” i.e., having no or an easily
manageable effect on method applicability, or “moderate,” i.e.,
causing slight restrictions to method applicability. Methods that
scored “high,” i.e., limited method applicability, require further
research to improve method applicability.

Required expertise describes the level of expertise needed to
conduct field sampling/surveying or sample analysis. It was rated
following categories proposed by JRC (2013): “Low” indicates
the need for trained personnel without specific professional
education, “moderate” requires trained personnel with specific
professional education and “high” requires special skills.

RESULTS AND DISCUSSION

Method Classification
Monitoring typically comprises three steps: (1) field
sampling/surveying in which in situ or remote samples/data
are gathered; (2) sample analysis, which refers to the treatment
of gathered samples/data to extract quantitative or qualitative
information; and (3) data analysis, the treatment of quantitative
and qualitative information to interpret the resulting data,
e.g., by calculating metrics or applying class boundaries. We
classify methods for field sampling/surveying as either in situ
research vessel-dependent (sampling within the water, the
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TABLE 2 | Overall rating of the costs and applicability of novel methods.

Step in monitoring Classification Method Investment
costs

Monitoring
costs

Overall
costs

Reliability Environmental
impact

Added
value

Limitations Required
expertise

Applicability

Field sampling/surveying In situ, research
vessel-dependent

Moving Vessel
Profiler

− − | | + 0 + − 0 +

Remotely Operated
Towed Vehicle

− − | | + 0 ++ − 0 ++

Manta Trawl + + + + − ++ − − + +

Rocket + + + + − ++ − + ++

GEMAX 0 + + + − ++ 0 + ++

In situ, research
vessel−independent

Argo Float 0 + + + 0 + − 0 +

Glider − − 0 − − 0 ++ − 0 0

FerryBox − + 0 + 0 + 0 + ++

Profiling Buoy − − + 0 + 0 + − + ++

Bottom-mounted
Profiler

− − + 0 + 0 + − + ++

Active
Biomonitoring using
Blue Mussels

++ + + + − − ++ − 0 0

Passive Samplers:
Chemcatcher and
POCIS

+ 0 0 + − ++ 0 0 ++

Artificial Substrates:
ARMS and ASU

++ + + + − ++ − 0 +

Citizen
Observations

Citizen
Observations

+ ++ ++ + + ++ − 0 ++

Remote sensing Unmanned Aerial
Vehicles

0 | | + − + − − 0 −

Earth Observation + + + + 0 ++ 0 − ++

Remote Electronic
Monitoring

0 − − − + 0 + − − + +

Sample analysis Field analysis HydroFIA R©pH 0 + + + 0 + − + ++

Imaging Flow
Cytometry Platform

− − + 0 + 0 + − − 0

Laboratory analysis DNA
Metabarcoding

0 + + + − ++ − 0 +

Stable Isotope
Analysis

++ 0 + + − ++ 0 0 ++

Computer−based
Identification

0 + + + + 0 + − − 0

Overall costs are divided into investment and monitoring costs, whereas applicability comprises reliability, environmental impact, added value, limitations and required expertise. “++” indicates a very high, “+” a high,
“0” a moderate, “−” a low and “−−” a very low rating.
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whole deployment time is depending on the operation of a
(research) vessel), in situ research vessel-independent (operation
is independent of a research vessel, though devices may be
deployed and recovered using one), citizen observation or
remote sensing. Methods for sample analysis comprise both field
and laboratory analysis. Methods for data analysis were not
included in this work.

Method Descriptions
We identified twenty-two methods to be reviewed, half of
the methods were mentioned in both the stakeholder survey
and literature, half by stakeholders only. In the following, we
give a short description of each novel monitoring method.
Furthermore, we list the MSFD descriptor(s), as they can provide
information on and highlight the gaps the respective methods can
fill (Table 3). Comprehensive method descriptions can be found
in the Supplementary Material B or on the BONUS FUMARI
methods database2.

Methods for Field Sampling/Surveying
In situ, Research Vessel-Dependent
The Moving Vessel Profiler (MVP) is a free-falling “fish,”
which generates near-vertical high-resolution profiles of the
water column. The fish is attached to a winch on board of
a research vessel and operated while the vessel is moving
(Figure 1A; Furlong et al., 2006). In marine monitoring the
MVP can be operated between stations, and therefore increase
the number of profiles generated during a monitoring cruise.
These additional data can be used for a more comprehensive
assessment of eutrophication and hydrographical conditions due
to the enhanced spatio-temporal resolution and coverage of
monitoring data.

The Remotely Operated Towed Vehicle (ROTV) is a towed
profiler, which is deployed from a research vessel and can be
operated in three dimensions in the water column (Figure 1B;
Floeter et al., 2017). In marine monitoring ROTVs enhance
the spatio-temporal resolution and coverage of monitoring data
used to assess eutrophication and hydrographical conditions.
Furthermore, it can be used to obtain high-resolution data
or additional information in a specific area of interest, when
steered manually. For instance, ROTVs can be operated for
the detection and identification of warfare relicts dumped in
the sea, and sampling of contaminated water and sediment
(Beldowski et al., 2018).

A Manta Trawl is a net-based sampling device to collect
marine surface microlitter bigger than 300 µm (Figure 1C).
While being dragged on the water surface, it collects water with
its opening. The water is filtered through a fine net and the litter
is stored in the cod end, a removable collecting bag (Setälä et al.,
2016; Tamminga et al., 2018). In marine monitoring the Manta
Trawl can be deployed between monitoring stations to routinely
collect data on microlitter in surface waters. In particular,
the possibility for a standardised monitoring of microplastics,
which is not included in the current monitoring directives

2http://freshwaterplatform.eu/fumari/

(HELCOM, 2018a; Kahlert et al., 2020), gives the Manta a high
relevance for the Baltic Sea monitoring.

The Rocket is an example for an encapsulated through-
flow filtration device used to sample waterborne microplastics
in the upper water layers (Figure 1D; Lenz and Labrenz,
2018). The concept is based on suction of water through fine
stainless-steel cartridge filters to retain any suspended particulate
matter larger than the applied pore size (i.e., 10 µm). The
mobile design allows for application at field sites, as well as
application aboard a vessel to take open water samples. The
Rocket is a valuable tool for addressing monitoring needs for
pollution of smaller microplastic particles (i.e., < 300 µm) and
to cover locations where the application of trawling systems is
impractical or impossible.

A Sediment Corer like the GEMAX is a gravity corer to
sample soft sediments (Figure 1E). It is deployed from a research
vessel and when released, the corer falls down the water column
and vertically cuts into the sediment (Charrieau et al., 2018).
A closing mechanism automatically locks the sediment in the
system when recovering the corer. The GEMAX is an efficient
sampler for monitoring purposes as it takes two sediment cores
at the same time doubling the sampled volume of the sediment
compared to the more common single-core corers. In marine
monitoring it can be deployed at sampling stations with soft
sediment to sample microlitter deposited in sediments. The Corer
is especially valuable since it offers a standardised method for the
monitoring of microplastics.

In situ, Research Vessel-Independent
The Argo Float is a free-floating platform, which generates
vertical profiles of the water column (Figure 1F). Since it floats
freely, its horizontal range and path is defined by the currents.
It frequently surfaces by changing buoyancy due to an oil filled
bladder. In general, an Argo Float profiles at 10-day intervals,
but intervals can also be programmed to generate, for instance,
multiple profiles a day (Roiha et al., 2018; Siiriä et al., 2019). In
marine monitoring Argo Floats can be deployed to autonomously
obtain high-resolution vertical profiles of the water column to
assess eutrophication and hydrographical conditions.

The Glider is an autonomous underwater vehicle used
to generate horizontal profiles of the physico-chemical and
biological state variables along its route being defined by an
operator (Figure 1G). It can move down to 1,500 m by changing
buoyancy due to an oil-filled bladder (Liblik et al., 2016). Since
Gliders can autonomously move underwater, they can also be
operated in ice-covered areas and under harsh conditions (Brito
et al., 2014; Meyer et al., 2018). Obtained water quality data can
be used for a more comprehensive assessment of eutrophication
and hydrographical conditions and Gliders can also be used for
the detection of warfare relicts dumped in the sea.

A FerryBox is an automatic flow-through system for the
continuous measurement of water parameters (Figure 1H). This
system is specifically developed for the permanent operation
on non-research vessels like ferries, which regularly ship their
transit routes (Petersen, 2014; EuroGOOS, 2017). Regarding
the marine monitoring, the FerryBox enables the acquisition of
long-term time series on a constant route and, therefore, the
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Unmanned Aerial Vehicles # # # # # #
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Remote Electronic Monitoring # # #
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Imaging Flow Cytometry Platform # # # #

(e)DNA Metabarcoding #/ #/ #/ #/ #/ 

Stable Isotope Analysis # #

Computer-based Identification # # #

“#” indicates methods that can fill a gap type (i), “ ” indicates methods that can fill a gap type (ii), methods with the potential to fill a gap type (iii) (in this case: Climate Change and Ecosystem Services) are highlighted
using italic font. The descriptors with main gaps identified by Emmerson et al. (2019) and Kahlert et al. (2020) are also highlighted using italic font.
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FIGURE 1 | (A) Moving Vessel Profiler © AML Oceanographic; (B) Remotely Operated Towed Vehicle © MacArtney; (C) Manta Trawl © Maiju Lehtiniemi, SYKE; (D)
Rocket © Robin Lenz, IOW; (E) GEMAX Corer © Maiju Lehtiniemi, SYKE; (F) Argo Float © www.argo.uscd.edu; (G) Glider © Kimmo Tikka, FMI; (H) FerryBox ©
modified after 4HJena and SLU; (I) Profiling Buoy © Tiina Sojakka, UTU; (J) Bottom-mounted Profiler © Siim Juuse; (K) Active Biomonitoring using Blue Mussels ©
Jana Ulrich, CAU; (L) POCIS © Heidi Ahkola, SYKE; (M) ARMS (left) and ASU (right) © AZTI Tecnalia; (N) Citizen Observations © Vanessa Riki, SYKE; (O)
Unmanned Aerial Vehicle © Jan Eric Bruun, SYKE; (P) Earth Observation © ESA Copernicus Sentinel Data (Q) Remote Electronic Monitoring © Archipelago Marine
Research; (R) HydroFIA R©pH © Kongsberg Maritime Contros; (S) Imaging Flow CytoBot © McLane Research Laboratories; (T) DNA Metabarcoding © Leoni Mack,
UDE; (U) Stable Isotope Analysis © Leoni Mack, UDE; (V) Computer-based Identification of Organisms © Luca Bravo.
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monitoring of temporal changes in food webs, eutrophication
and hydrographical conditions like ocean acidification (Lips and
Lips, 2017; Schneider and Müller, 2018).

Profiling Buoys for the automatic measurement of water
quality profiles are moored platforms, floating on the water
surface (Figure 1I). For profiling, a multi-parameter probe is
lowered in the water column to conduct measurements either
continuously or stopping at specific heights. Profiling frequency,
intermediate profiling steps and the maximal depth can be
programmed (Liu et al., 2019; Venkatesan et al., 2019). Due
to the generation of frequent profiles at a given station, the
changes in water conditions within the day can be recorded
over long periods and, therefore, Profiling Buoys can be
used to assess biodiversity, eutrophication and hydrographical
conditions (Lips et al., 2011).

Bottom-mounted Profilers for the automatic measurement
of water quality profiles are platforms moored to the sea bed
(Figure 1J). For profiling, either the whole platform or the
multi-parameter probe is rising. With profiling frequencies of
3–8 h, the changes in biological and physico-chemical water
conditions within the day can be recorded over long periods.
Thus, bottom-mounted profilers can be used for an enhanced
assessment of biodiversity, eutrophication and hydrographical
conditions (Prien and Schulz-Bull, 2016; Stoicescu et al., 2019).

For Active Biomonitoring with Blue Mussels, the bivalves
are used as sentinel species in the monitoring of bioavailable
pollutants (Figure 1K). Mussels enable monitoring the pollution
of a specific location, as they accumulate environmental
chemicals in their tissues. Therefore, mussels without former
pollution are translocated to a specific area of interest (Schöne
and Krause, 2016; Strehse et al., 2017). For marine monitoring
purposes, this method enables a more comprehensive monitoring
of eutrophication and contamination due to the collection of
time-weighted average concentrations of bioavailable pollutants,
including nutrient and carbon isotopes (Briant et al., 2018) and
dumped munitions (Strehse et al., 2017; Appel et al., 2018).

Passive Samplers like the Chemcatcher R© and Polar Organic
Chemical Integrative Sampler (POCIS) are collecting
contaminants based on molecular diffusion and sorption to
a binding agent (Figure 1L). They are deployed at a specific
location and accumulate the contaminants in the surrounding
environment over time (Vrana et al., 2005). The Chemcatcher R©

collects in-/organic substances of polar or non-polar nature
(Charriau et al., 2016), while the POCIS is selective for polar
organic chemicals (Harman et al., 2012). Passive Samplers
can be used to enhance the monitoring of contaminants,
including dumped munitions, due to the collection of time-
weighted water concentrations of pollutants (Belden et al., 2015;
Lotufo et al., 2019).

Artificial Substrates are sampling devices mimicking
complex habitats to collect biological communities over years
(Figure 1M). The Autonomous Reef Monitoring Structure
(ARMS) mimics the complex structure of hard benthic habitats
like rocks or coral reefs, while the Artificial Substrate Unit
(ASU) resembles soft corals or sponges (DEVOTES, 2013; Cahill
et al., 2018). The analysis for community characterisation can be
coupled to molecular techniques such as DNA metabarcoding.

The applicability of both ARMS and ASUS in marine monitoring
is highly valuable, since they enable a standardised sampling
of the hard-bottom benthic communities across countries and
therefore comparable monitoring data (DEVOTES, 2013).

Citizen Observations
In Citizen Observations, voluntary observations are made
by non-professional observers (Figure 1N). Coordinated by
researchers, engaged citizens are integrated into environmental
science, including the observation of various environmental
phenomena, which are transmitted to specific platforms using
the smartphone or computer. Several programmes have been
established at local scale (Palacin-Silva et al., 2016), including
the monitoring of Secchi depth3, non-indigenous species4,
phytoplankton5, and several local, national and European wide
campaigns for the prevention of marine litter near the shore
and in the coastal waters6,7. Besides added value for the
acquisition of monitoring data, the integration of citizens into
the environmental monitoring can strongly increase the societal
environmental awareness.

Remote Sensing
Unmanned Aerial Vehicles (UAVs), commonly known as
“drones,” are measurement platforms collecting data while
flying over the area of interest (Figure 1O). For operations
in marine and coastal environments, different types of UAVs
are used with varying flight duration and modes of operation
(autonomous or manual; Colefax et al., 2017; Setlak and
Kowalik, 2019). In marine monitoring UAVs can be used
to increase the spatio-temporal resolution and coverage of
monitoring data for parameters used to assess biodiversity,
eutrophication, commercial fish and shellfish, hydrological
conditions, contaminants and marine litter.

In a monitoring context, Earth Observation means the use
of satellites for the remote sensing of biological and physico-
chemical properties of the upper water layer (Figure 1P).
Europe-wide satellite missions are performed by the European
and North American Space Agencies, which are offering free
access to their satellite images (Harvey et al., 2015; Attila et al.,
2018). In marine monitoring Earth Observation profoundly
increases the temporal resolution and spatial coverage of data
on water quality parameters, giving a more comprehensive
picture on environmental conditions related to biodiversity,
eutrophication and hydrographical conditions (Anttila et al.,
2018; Attila et al., 2018).

In Remote Electronic Monitoring (REM), video and sensor
technology are combined to provide a comprehensive overview
on the fishing activity and catch handling on fishing trawlers
(Figure 1Q; WWF, 2015, 2017). The analysis of the REM data can
be coupled to computer-based identification and quantification
of organisms. In marine monitoring REM can be used to
enhance data acquisition on all activities of fishing trawlers,

3https://www.havaintolahetti/
4https://www.invasive-alien-species-finland
5https://Leväbarometri
6https://www.siistibiitsi.fi/
7https://www.eea.europa.eu/marine-litterwatch
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enabling a more comprehensive monitoring of biodiversity,
commercial fish and shellfish, and food webs (Kindt-Larsen
et al., 2012). Furthermore, fishing practices might become more
sustainable due to the continuous surveillance on board of the
trawlers (WWF, 2017).

Methods for Sample Analysis
Field Analysis
The CONTROS HydroFIA R©pH system is autonomously
conducting flow injection analysis (FIA) to determine the pH of
water (Müller et al., 2018; Figure 1R). The system was developed
for the continuous long-term measurement of pH of the surface
water and is therefore suitable for both the operation on research
vessels and non-research vessels like ferries (Aßmann et al., 2011;
Müller et al., 2018). In marine monitoring the system can be
deployed independently or in combination with a FerryBox to
obtain pH long time series for locations along a set route. This
enables spatial and temporal monitoring of ocean acidification
(Müller et al., 2018).

Imaging Flow Cytometry (IFC) platforms are used to
analyse phytoplankton communities (Figure 1S) by combining
traditional flow cytometry and automated imaging to analyse
large sample sizes with high speed (Karlson et al., 2016).
The different instruments include laboratory applications,
instruments included into a FerryBox, or autonomous in situ
platforms at fixed stations. Machine Learning algorithms can be
used for analysing the acquired images (González et al., 2019).
IFC platforms enhance the assessment of biodiversity, non-
indigenous species, food webs and eutrophication, and can also
be important components early-warning-systems for harmful
algal blooms (Anderson et al., 2019).

Laboratory Analysis
(e)DNA Metabarcoding is a molecular-based methodology
that allows the simultaneous identification of several species
within a sample using high-throughput sequencing technologies
(Figure 1T). To attain species lists of complete biological
communities simultaneously, DNA metabarcoding can be
applied. In addition, metabarcoding can be used to detect species
inhabiting a certain habitat using environmental DNA (eDNA)
extracted from water or sediments (Pawlowski et al., 2018;
Zhang et al., 2020). In marine monitoring DNA metabarcoding
has the potential to improve the monitoring of biodiversity,
non-indigenous species, commercial fish and shellfish and
eutrophication indicators (Jeunen et al., 2019).

Stable Isotope Analysis (SIA) can be performed to derive
food web structures and energy pathways within communities
(Michener and Kaufman, 2007; Figure 1U). The stepwise
enrichment of 15N compared to 14N with increasing trophic level
enables the estimation of the food chain lengths (of number of
trophic transfer steps within the food web). The stability of the
food web can be monitored by comparing the 13C/12C isotopic
ratios of predatory fish among years (Michener and Kaufman,
2007; Jardine et al., 2017). So far, parameters to assess food webs
are still under development (Rombouts et al., 2013) and the
monitoring of food webs can be improved using the proposed
novel indicator “food web length and stability” and assessed

using SIA. Furthermore, the assessment of eutrophication can
be supported by identifying anthropogenic nitrogen and carbon
inputs (Briant et al., 2018; Ziółkowska et al., 2018).

For the computer-based identification and quantification
of organisms, computer systems are trained to autonomously
identify and count sampled organisms using algorithms
(“Machine Learning”; Figure 1V; Kelleher et al., 2015). For the
identification of larger organisms (e.g., fish), an algorithm can be
trained based on an image recognition system. After successful
training, the algorithm can be used to identify and quantify
caught species/bycatch (Williams et al., 2012) or evaluate
indicator-related metrics (Uusitalo et al., 2016). For marine
monitoring, computer-based identification of organisms offers
an automated method to increase the speed and accuracy of data
acquisition (Osterloff et al., 2019).

Rating of Methods
Costs of Novel Monitoring Methods
Two thirds of the analysed novel methods require very low to
low overall costs, while four methods require moderate and two
high overall costs (Table 2). There is no clear pattern between the
different categories of monitoring methods. Citizen Observations
is the only method with very low overall costs. This is due to the
voluntary field sampling of citizens (data acquisition at no cost)
with only the web services and management activities requiring
personnel time. Gliders and REM have high overall costs. For
Gliders, this is due to very high investment costs (100,000 €
for purchasing a Glider). Regarding REM, the installation and
maintenance of the system on a single trawler is of low costs
with 17,000 €. However, to create equal economic conditions
between the trawlers, according to WWF (2017) the system
needs to be installed on at least all big sized (> 12 m) trawlers
of the Baltic Sea. In the whole area, there are 558 registered
big sized trawlers (ICES, 2018), resulting in the high overall
costs of REM. It should be noted that the sharing of facilities
and instruments offers the possibility to reduce investment and
monitoring costs. For instance, Gliders are such instruments,
and their investment costs could be reduced by splitting them
between institutions.

There is a broad range of costs across the different
methods, which also reflects the diversity of methods addressed.
Investment costs of 80,000 € on average are required for the
initial set up of a novel method. With about 500 €, the Artificial
Substrates require the lowest investments, while the ROTV and
MVP require about 350,000 and 400,000 €, respectively. This
wide range in costs is also reflected in the monitoring costs:
Based on the assumptions made (see Supplementary Material
B), the use of a method for the annual monitoring of the whole
Baltic Sea requires on average 93,000 €. Using computer-based
identification and Citizen Observations have the lowest costs with
300 and 600 € annually, while the use of Gliders and REM require
85,000 and 1,116,000 €, respectively.

Monitoring costs could not be assessed for three methods.
For the MVP, the extrapolation of monitoring costs on Baltic-
wide coverage could not be estimated. These costs depend on
the total number of installed devices on research vessels, as well
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as the frequency, at which these are deployed. Other methods
can be used for various different applications, including the
ROTV and UAV. The ROTV can be deployed automatically
to receive profiles, or in manual mode, steering it in three
dimensions to monitor a small area at a very high resolution.
Especially the manual deployment is very specific in its time, area
and frequency. In case of UAVs, the monitoring costs heavily
depend on the kind of vehicle (fixed-wing or multi-rotor and
size of vehicle), the place of deployment (open sea or coastal),
the mode of operation (manual or automatic operation) and
monitoring objective (long-term deployment of a specific area or
occasional snapshots). All these variables cannot be estimated for
all countries of the Baltic Sea.

We could compare the monitoring costs using novel
methods to the costs using traditional methods only for DNA
metabarcoding and REM. Regarding metabarcoding, the costs
for the molecular identification per sample are decreasing with
an increasing number of samples, while the morphological
approach has a fixed price (and waiting time) per sample
(Aylagas et al., 2018). Metabarcoding is thus most cost-efficient
when a sufficiently high number of samples is analysed,
which is met under the assumptions made (Supplementary
Material B). This also applies when identifying hard-bottom
benthic macroinvertebrate communities sampled by ARMS and
ASU in the Baltic Sea. Assuming that three replicates of ARMSs
and ASUs are deployed per southern sub-basin (11 stations, since
in the southern Baltic mainly soft bottom is prevalent) and three
replicates per northern WFD water body (32 stations, since in
the northern Baltic hard substrate is more common), this adds
up to 43 sites and 260 samples. Based on these assumptions, the
annual costs for DNA metabarcoding sum up to about 45,000
€. The traditional morphological identification of ARMS and
ASU samples costs 455 € per sample, summing up to about
118,000 €. See Aylagas et al. (2018) for a detailed calculation
of the costs for metabarcoding and traditional identifications. If
eDNA metabarcoding is applied rather than bulk sample analysis,
the whole costs decrease further for eDNA because no sorting is
needed but DNA is directly extracted from water or sediment.
Furthermore, WWF (2017) made comprehensive analyses on
different methods for the monitoring of fisheries and concluded
that REM is the most cost-efficient method for this purpose.

For the remaining methods, the costs could not be compared
to the traditional methods due to various reasons. For traditional
methods that are research-vessel based, monitoring costs could
not be determined due to the case-specific costs (e.g., number of
sampled stations per cruise; length of cruise; personnel on board).
Methods like ROTV, MVP, FerryBox, or EO collect data on
multiple parameters and, therefore, could replace or supplement
more than one traditional method. Methods like the Manta
Trawl, Rocket, Sediment Corer or SIA collect data on novel
quality parameters and, therefore, there is no traditional method
to be compared to. This is a common problem when assessing
cost efficiency of novel methods (Hyvärinen et al., Submitted).

Applicability of Novel Monitoring Methods
Twelve methods are rated with very high and five with high
applicability, while four methods are rated as moderate and

one as low. The applicability rating showed no patterns among
monitoring method categories. The methods with very high and
high ratings can be recommended for Baltic routine monitoring.
Here, single disadvantages in monitoring methods (e.g., a
moderate environmental impact or a high expertise required)
are overruled by their specific advantages. The Glider, Active
Biomonitoring using Blue Mussels, IFC platforms and computer-
based identification of organisms gained an overall “moderate”
rating, while UAVs gained an overall “low” rating. These methods
can be recommended for specific monitoring tasks and/or need
further technical development to achieve a higher applicability.

Most of the methods are rated with respect to a specific
monitoring objective or application and therefore, the
rating is dependent on specific assumptions. Regarding DNA
metabarcoding, the rating refers to the analysis of the species
composition in bulk samples. The approach is limited as it
does not allow storage of samples and does not reveal absolute
abundances of the organisms (Leese et al., 2018). However, some
studies have demonstrated relationships between the number
of reads and species abundance when calculating DNA-based
indices (Aylagas et al., 2018; Ushio et al., 2018; Schenk et al.,
2019). In general, molecular methods have the potential to
enhance the monitoring of several MSFD descriptors and
thus are a promising approach for future marine monitoring
(Danovaro et al., 2016; Valentini et al., 2016; Weigand et al., 2019;
Filipe et al., 2019).

In case of Gliders, the technology seems not advanced enough
for a cost-efficient monitoring so far, but due to the high
potential of this method, research is conducted to further enhance
its applicability (e.g., Meyer, 2016; Alenius et al., 2017). The
method needs further improvement, since about 41% of the
missions in shallow water currently fail due to platform loss or
technical defects (like leakages or failures in the power supply
or buoyancy; Brito et al., 2014). But due to their high spatio-
temporal resolution and coverage in data acquisition, the Gliders
offer a high potential to improve the marine monitoring, which
cannot be achieved by conventional underwater vehicles or
research vessel-based methods (Brito et al., 2014). Furthermore,
Gliders can be used to detect warfare relicts dumped in the sea,
increasing the importance of further technical development.

In case of the UAVs, limitations such as relatively short
operating times and civil aviation restrictions cause the low
applicability rating. But UAVs have a high potential to sample
small areas with high spatio-temporal resolution, also in
remote areas. The sampling is less time consuming and less
infrastructure is needed compared to research vessel-based
sampling. Currently, there is a lot of research to improve
the technology of the platforms and available sensors and in
turn improve the cost-efficiency and applicability (e.g., Colefax
et al., 2017). In conclusion, all the methods included in this
analysis were identified as promising novel monitoring methods
by stakeholders and therefore each method may have specific
advantages for use in a novel monitoring system.

Coverage of Gaps by the Novel Methods
The novel methods can be used to fill gaps of type (i)–(iii)
regarding all MSFD descriptors except seafood contamination
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(Table 3). The main gaps of type (i) can be compensated using
several of the reviewed methods, which partly allow for a higher
spatial and/or temporal resolution of monitoring data due to their
autonomous measurement (Table 3). We want to emphasize the
use of Earth Observation to facilitate the observation of the entire
assessment area in the open sea, which is a highly relevant topic
in the MSFD.

The lack of indicators, and therefore gaps of type (ii), can be
addressed for all descriptors but underwater noise/energy. Using
(e)DNA metabarcoding, the monitoring of several descriptors
can be enhanced, since new indicator species are made accessible.
A promising method for an improved monitoring of food webs
is SIA, using the novel indicator “food web length and stability.”
Regarding sea-floor integrity, the Artificial Substrates ARMS and
ASU can be used to generate a more comprehensive data basis by
monitoring the presence of particularly sensitive and/or tolerant
species, but still, indicators for a better reflection of the descriptor
remain to be developed. The monitoring of dumped munitions
was addressed by several recently finished and ongoing research
projects (e.g., MODUM—Towards the Monitoring of Dumped
Munitions Threat, 2013–2016; UDEMM, 2016—Environmental
monitoring for the delaboration of munitions on the seabed,
2016–2019; DAIMON—Decision Aid for Marine Munition,
2019–2021). For the detection and identification of dumped
warfare relicts, ROTV and Gliders can be deployed, while the
concentrations of leaking contaminants in the water can be
monitored employing Active Biomonitoring using Blue Mussels
or Passive Samplers. Regarding microplastics, the constant
fragmentation and the large diversity within types of particles
cannot be adequately addressed by a single method (Potthoff
et al., 2017). Therefore, novel methods can be combined, e.g., by
sampling larger particles using the Manta Trawl and complement
these data by Rocket filtration samples and Sediment Corers.
The applicability of the Earth Observation techniques to measure
marine litter have been under study in recent years and
methodologies are evolving (Martinez-Vicente et al., 2019).

Ecosystem services and climate change were also identified
as missing descriptors and are addressed in recent research
(HELCOM, 2013). The monitoring of these descriptors is a
wide and complex field and therefore, was not addressed in this
work. However, in the course of the BONUS FUMARI project,
indicators for the monitoring of ecosystem services and novel
methods to measure these were collected on the novel methods
website http://freshwaterplatform.eu/fumari/.

The Need for Adaptable Monitoring
Practices
With this overview and evaluation of monitoring methods, we
strive to support the decision making and implementation of
environmental monitoring. Even though the focus of this study
is on filling the gaps in the Baltic monitoring, the addressed
methods can also be applied for specific research questions and
in other marine regions worldwide. An in-depth comparative
analysis of the methods for the environmental status assessment
was not envisaged by this study and is not necessarily feasible, due
to their heterogeneous nature and the wide range of applications

possible. Furthermore, the cost-efficiency of the addressed novel
methods was not compared to the traditional methods they might
replace or supplement. This is due to the wide applicability of
the novel methods that can address several ecosystem elements
and indicators, the high number of factors influencing the costs,
and the lack of cost analyses regarding the specific methods.
An alternative option for the cost evaluation, which is not
addressed here, would be using depreciation costs rather than
investment costs. We defined investment costs as the costs for the
monitoring device or deployment system, including the necessary
equipment, and personnel training; this limits the application of
depreciation costs.

New game-changing or more effective novel methods may
produce high value data that are not fully comparable to
these produced by traditional methods and, thus, may fail to
meet current legislative demands. Very often the suggested
implementation of such novel methods may be dismissed due
to a lack of full comparability, but it seems unreasonable to
assume a full comparability of novel methods with old ones. The
current legislation driving routine monitoring of the Baltic Sea
was drafted against the backdrop of the scientific knowledge and
the methods available at the time of drafting. In fact, such a
tacit prerequisite may hinder both scientific progress as well as
effective future management of the Baltic Sea.

While we do not advocate abrupt changes in monitoring or the
replacement of old by novel methods in Baltic monitoring per se,
we stress the need to review whether there is a need to re-examine
and adapt our current monitoring. With this contribution, we
want to highlight the need for adaptable monitoring practices.
For this, parallel and standardised comparisons are of central
importance (Blackman et al., 2019). However, such novel
methods need to be mature enough to have gained considerable
consensus within the scientific community as well as HELCOM
and also to have resulted in standardised and replicable devices
and process chains. In order to implement novel methods
as parts of monitoring programmes, their applicability and
cost-efficiency needs to be demonstrated in the considered
ecosystem, the operational practices and data flows need to be
managed, and guidance for the interpretation of the acquired
data needs to be given (preferably including indicators that
can use the data to assess the ecosystem status). The use
of the novel method should be calibrated and standardised
internationally to allow for comparison between different
areas or deployments.
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