30 research outputs found
Associations with photoreceptor thickness measures in the UK Biobank
Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40–69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
Integrated monitoring of mola mola behaviour in space and time
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014
Uncertainties in measurements of electron temperature and the estimation of F-region electron heat conduction from EISCAT data
High time-resolution observations of periodic frictional heating associated with a Pc5 micropulsation
Stability of Phase Transformation Temperatures During Cycling of Ti-15.8Nb-4.94Al-0.06Sc Shape Memory Alloy
The generation and propagation of atmospheric gravity waves observed during the Worldwide Atmospheric Gravity-wave Study (WAGS)
During the Worldwide Atmospheric Gravity-wave Study (WAGS) in October 1985, the EISCAT incoherent scatter radar was used to observe the generation of atmospheric gravity waves in the auroral zone in conjunction with a network of magnetometers and riometers. At the same time a chain of five ionosondes, an HF-Doppler system, a meteor radar and a radio telescope array were used to monitor any waves propagating southwards over the U.K.
The EISCAT measurements indicated that in the evening sector both Joule heating and Lorentz forcing were sufficiently strong to generate waves, and both frequently showed an intrinsic periodicity caused by periodic variation in the magnetospheric electric field.
Two occasions have been examined in detail where the onset of a source with intrinsic periodicity was followed by a propagating wave of the same period which was detected about an hour later, travelling southwards at speeds of over 300 m s−1, by the ionosondes and the HF-Doppler radar. In both cases the delay in arrival was consistent with the observed velocity, which suggests a direct relationship between a source in the auroral zone and a wave observed at mid-latitude
