180 research outputs found

    Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting

    Get PDF
    Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup (Homo heidelbergensis), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both. FEA reveals few differences between H. heidelbergensis, modern humans, and Neanderthals in their capacities to sustain high anterior tooth loadings. CFD shows that the nasal cavities of Neanderthals and especially modern humans condition air more efficiently than does that of H. heidelbergensis, suggesting that both evolved to better withstand cold and/or dry climates than less derived Homo. We further find that Neanderthals could move considerably more air through the nasal pathway than could H. heidelbergensis or modern humans, consistent with the propositions that, relative to our outgroup Homo, Neanderthal facial morphology evolved to reflect improved capacities to better condition cold, dry air, and, to move greater air volumes in response to higher energetic requirements

    Looking ahead: forecasting and planning for the longer-range future, April 1, 2, and 3, 2005

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring Conference that took place during April 1, 2, and 3, 2005.The conference allowed for many highly esteemed scholars and professionals from a broad range of fields to come together to discuss strategies designed for the 21st century and beyond. The speakers and discussants covered a broad range of subjects including: long-term policy analysis, forecasting for business and investment, the National Intelligence Council Global Trends 2020 report, Europe’s transition from the Marshal plan to the EU, forecasting global transitions, foreign policy planning, and forecasting for defense

    Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians

    Get PDF
    BACKGROUND: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed human remains from the site. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a detailed comparison of cranial, including a virtual endocast for the Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique and the results show both samples to be from the Pleistocene-Holocene transition: ∼14.3-11.5 ka. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong. Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia

    Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study

    Get PDF
    Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans

    Performance of mitochondrial DNA mutations detecting early stage cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites.</p> <p>Methods</p> <p>We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip<sup>® </sup>Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region.</p> <p>Results</p> <p>Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors.</p> <p>Conclusion</p> <p>Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is unclear the biological relevance of these detected mitochondrial mutations. Whether the detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for diagnosis and monitoring applications requires further investigation.</p

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
    corecore