870 research outputs found

    Results from the Baynes Sound Environmental Intelligence Collaboration (BaSEIC)

    Get PDF
    Baynes Sound, in the northern Salish Sea, hosts more than 50% of the BC shellfish aquaculture industry, with Pacific oyster (Magallana gigas) as the dominant production species. The known vulnerability of this species to ocean acidification (OA)-driven changes in seawater chemistry – specifically through alteration in calcium carbonate (CaCO3) mineral stability, combined with periodic production problems in Baynes Sound – have led to a growing concern regarding possible contemporaneous impacts of OA in spite of lacking environmental intelligence detailing baseline conditions. In order to build our understanding of current biogeochemical patterns in this key Salish Sea setting, the BC Shellfish Growers Association and the Hakai Institute, with support from partnering shellfish growers, the Province of British Columbia and the Tula Foundation, formed a research initiative, known as the Baynes Sound Environmental Intelligence Collaboration (BaSEIC), in early 2016. Seasonally-resolved and spatially-distributed discrete seawater samples were collected by shellfish growers and an independent citizen science group operating in the area. Discrete measurements were used to add spatial context to a high-frequency data stream produced by instrumentation installed at a shore-side facility for continuous observing of in situ (8 m) CO2 chemistry. Taken together, the discretely-collected and continuously-measured seawater CO2 data provide a dynamic picture of the baseline conditions in Baynes Sound, including: (1) a pronounced seasonal cycle with surface-focused favorable conditions for CaCO3 mineral precipitation between spring and early autumn, (2) a sharp decrease in mineral stability of sub-surface water including excursions toward CaCO3 undersaturated conditions during the winter season and summer neap tides, and (3) a seasonal north-south gradient in mineral stability. These results illustrate the current CO2 system patterns in Baynes Sound that are now being considered in shellfish industry management discussions

    Ocean acidification in the surface waters of the Pacific-Arctic boundary regions

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 122-135, doi:10.5670/oceanog.2015.36.The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (Ωarag). Enhanced sea ice melt, respiration of organic matter, upwelling, and riverine inputs have been shown to exacerbate CO2 -driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2 . Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water Ωarag in the Bering, Chukchi, and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced Ωarag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in Ωarag may indicate higher resilience of the Bering Sea ecosystem to these low-Ωarag conditions than the ecosystems of the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for Ωarag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for Ωarag for the Bering Sea does not pass out of the natural variability range until 2044. As Ωarag in these shelf seas slips below the present-day range of large seasonal variability by mid-century, the diverse ecosystems that support some of the largest commercial and subsistence fisheries in the world may be under tremendous pressure.This project was funded by the National Science Foundation (PLR- 1041102 and AGS-1048827)

    The story so far: an in situ pairing of chemical oceanography and physiology

    Get PDF
    Climate change is a pressing environmental concern, and understanding how abiotic variation contributes to population dynamics and persistence may ultimately predict the fates of species. Ocean acidification negatively impacts a range of species, including those using calcium carbonate for shell formation such as shellfish, which are important as ecosystem engineers and for food security. While much is known about carbonate chemistry and impacts of ocean acidification on the U.S. Pacific coast, there is limited regional information in British Columbia (BC), especially in socio-economically important coastal zones for aquaculture and migrating fisheries populations. Laboratory experimentation mimicking future climate scenarios provide valuable information on biological impacts under controlled conditions, but do not take into account the natural environmental fluctuations of coastal environments that may influence population persistence. This research program combines lower trophic level monitoring (plankton analysis), physiological responses (functional genomics of commercial bivalves) and high speed near real-time oceanographic monitoring at a field site in the northern Salish Sea, to provide information on system variability and its biological impacts on coastal ecosystems. Site abiotic variability will be discussed in the context of pre-industrial to current condition effects on species. Shellfish gene expression data will focus on population plasticity or microevolutionary adaptation to seasonal, optimal and sub-optimal calcium carbonate conditions over the short and long-term

    Changes in the arctic ocean carbon cycle with diminishing ice cover

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M., Evans, W., Timmermans, M., Krishfield, R., Williams, B., & Steele, M. Changes in the arctic ocean carbon cycle with diminishing ice cover. Geophysical Research Letters, 47(12), (2020): e2020GL088051, doi:10.1029/2020GL088051.Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and OPP‐1723308). In addition, M. S. was supported by ONR (Grant 00014‐17‐1‐2545), NASA (Grant NNX16AK43G), and NSF (Grants PLR‐1503298 and OPP‐1751363)

    Annual sea-air CO2fluxes in the Bering Sea: insights from new autumn and winter observations of a seasonally ice-covered continental shelf

    No full text
    High-resolution data collected from several programs have greatly increased the spatiotemporal resolution of pCO2(sw) data in the Bering Sea, and provided the first autumn and winter observations. Using data from 2008 to 2012, monthly climatologies of sea-air CO2 fluxes for the Bering Sea shelf area from April to December were calculated, and contributions of physical and biological processes to observed monthly sea-air pCO2 gradients (?pCO2) were investigated. Net efflux of CO2 was observed during November, December, and April, despite the impact of sea surface cooling on ?pCO2. Although the Bering Sea was believed to be a moderate to strong atmospheric CO2 sink, we found that autumn and winter CO2 effluxes balanced 65% of spring and summer CO2 uptake. Ice cover reduced sea-air CO2 fluxes in December, April, and May. Our estimate for ice-cover corrected fluxes suggests the mechanical inhibition of CO2 flux by sea-ice cover has only a small impact on the annual scale (<2%). An important data gap still exists for January to March, the period of peak ice cover and the highest expected retardation of the fluxes. By interpolating between December and April using assumptions of the described autumn and winter conditions, we estimate the Bering Sea shelf area is an annual CO2 sink of ?6.8 Tg C yr?1. With changing climate, we expect warming sea surface temperatures, reduced ice cover, and greater wind speeds with enhanced gas exchange to decrease the size of this CO2 sink by augmenting conditions favorable for greater wintertime outgassing

    Creativity and cognitive skills among millenials: thinking too much and creating too little

    Get PDF
    Organizations crucially need the creative talent of millennials but are reluctant to hire them because of their supposed lack of diligence. Recent studies have shown that hiring diligent millennials requires selecting those who score high on the Cognitive Reflection Test (CRT) and thus rely on effortful thinking rather than intuition. A central question is to assess whether the push for recruiting diligent millennials using criteria such as cognitive reflection can ultimately hamper the recruitment of creative workers. To answer this question, we study the relationship between millennials’ creativity and their performance on fluid intelligence (Raven) and cognitive reflection (CRT) tests. The good news for recruiters is that we report, in line with previous research, evidence of a positive relationship of fluid intelligence, and to a lesser extent cognitive reflection, with convergent creative thinking. In addition, we observe a positive effect of fluid intelligence on originality and elaboration measures of divergent creative thinking. The bad news for recruiters is the inverted U-shape relationship between cognitive reflection and fluency and flexibility measures of divergent creative thinking. This suggests that thinking too much may hinder important dimensions of creative thinking. Diligent and creative workers may thus be a rare find

    Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors

    Get PDF
    The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic -carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed
    corecore