

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2018 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 5th, 11:15 AM - 11:30 AM

The story so far: an in situ pairing of chemical oceanography and physiology

Helen Gurney-Smith *Fisheries and Oceans Canada, Canada, helen.gurney-smith@dfo-mpo.gc.ca*

Kayla Mohns Fisheries and Oceans Canada, Canada, kayla.mohns@dfo-mpo.gc.ca

Caitlin Smith Vancouver Island Univ., Canada, csmith@rupertport.com

Tamara Brown Microthalassia Inc., Canada, tamara.brown@microthalassia.ca

Brenna Collicutt Hakai Institute, Canada, brenna.collicutt@hakai.org

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Gurney-Smith, Helen; Mohns, Kayla; Smith, Caitlin; Brown, Tamara; Collicutt, Brenna; Haegert, Anne; and Evans, Wiley, "The story so far: an in situ pairing of chemical oceanography and physiology" (2018). *Salish Sea Ecosystem Conference*. 176.

https://cedar.wwu.edu/ssec/2018ssec/allsessions/176

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Speaker

Helen Gurney-Smith, Kayla Mohns, Caitlin Smith, Tamara Brown, Brenna Collicutt, Anne Haegert, and Wiley Evans

The story so far: an *in situ* pairing of chemical oceanography and ocean acidification physiological responses

H. Gurney-Smith, K. Mohns, C. Smith, T. Brown,
 B. Collicutt*, A. Haegert & W. Evans
 April 5, 2018
 Salish Sea Ecosystem Conference

Fisheries and Oceans Canada

Team + Collaborations

Helen Gurney-Smith (DFO)

Wiley Evans (Hakai)

S

Kayla Long (CSR)

Caitlin Smith (CSR)

Tamara Brown (Microthalassia)

Monique Raap (CSR, UVic)

Anne Haegert (Vancouver Prostate Centre)

Canada Hakai

Fisheries and Oceans Canada

Ocean Acidification

Time

рН

Ocean pH declined by 0.1 unit since industrial revolution (Orr *et al.*, 2005)

Expected decrease by another 0.5 unit by end of 2100 (IPCC projections)

Implications for organisms?

OA and Shellfish

- Calcium carbonate = less biologically available
- <u>Aragonite</u> = form of calcium carbonate = proxy
- Early larval stages most sensitive (Waldbusser et al., 2013, 2014, 2015)
- High energy expenditure --> deformities and mortality

Rational and Approach

Oysters in deep trouble: Is Pacific Ocean's chemistry killing sea life?

Ocean Acidification Devastates Oyster Farms in the Pacific NorthWest

- 1. What is happening in British Columbia?
- 2. Multiple trophic levels
- 3. Controlled laboratory vs. *in situ* studies
- 4. Multidisciplinary approach

How are shellfish physiologically responding to ocean acidification?

Study Site

Study Site

Experimental Setup – in situ

Experimental Setup

Chemical Oceanography

- Burk-o-later
- SST, salinity, pCO₂, TCO2

Canada

Experimental Setup

Plankton Sampling

- Phytoplankton
- Zooplankton

Canada

Kal

Experimental Setup

Shellfish Sampling

- Seasonal and targeted
- Multiple tissues
- Multiple commercial species

Canada

Chemical Oceanography

Wiley Evans and Hakai OA team

- Winter extended periods of low saturations
- Summer Higher but variable saturations

Now and in the future

- Aragonite saturation levels decreased
- **Biological window reduced**? Longer, more extreme corrosive events

Plankton

Tamara, the Microthalassia team and Hakai Oceanography

Canadä Hakai

Title: Primary and secondary productivity and harmful algae species in the northern Salish Sea, a dynamic coastal BC environment

Shellfish Gene Expression

Mussel Immune Study

- Small-scale study looking at mussel immune responses
- Significant differences in response among seasons

- Individuals having varied responses
 - Optimal times clustered
 - Stressful responses varied

- Phenotypic plasticity
- Different strategies for success? Adaptation?

Microarray Experiment

- Individual variation over more genes using shellfish stress <u>microarray</u>
- Targeted sampling in **favourable vs. corrosive** saturations
- Compared 15,000 gene expression responses per individual
- 306 genes were significantly differentially expressed in response

Differential Gene Expression

Similar responses to favourable, **varied** responses to corrosive conditions

Upregulated	Downregulated
Protein degradation	Byssus thread strength, muscle formation
Immune response and apoptosis	Shell formation, connective tissue strength
Antifungal, detoxification	Mitochondrial integrity, oxidative damage
DNA repair, transcription factors	Amino acid metabolism, protein sorting
Defense genes, bacterial recognition	Apoptosis inhibitor
Reproduction	Inflammation genes and heat shocks
	Canadä

Next Steps

Short-term

- New laboratories and raft built
- RNA-Seq analysis of oysters and scallops from favourable vs. corrosive conditions
- Plankton and OA data analyzed for correlations

Long-term

- Multistressor, multigenerational studies
- To track individual response in comparison to populations
- Influence of sex on responses
- Comparisons to other populations along gradients and coasts

Gregor Reid (DFO)

Thank you!

