124 research outputs found
Recommended from our members
An object-oriented decomposition of the adaptive-hp finite element method
Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed
Recommended from our members
Compact tokamak reactors part 2 (numerical results)
The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced
Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM
RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer’s disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYKtSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools
Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior
Electronic and optical properties of silver clusters were calculated using
two different \textit{ab initio} approaches: 1) based on all-electron
full-potential linearized-augmented plane-wave method and 2) local basis
function pseudopotential approach. Agreement is found between the two methods
for small and intermediate sized clusters for which the former method is
limited due to its all-electron formulation. The latter, due to non-periodic
boundary conditions, is the more natural approach to simulate small clusters.
The effect of cluster size is then explored using the local basis function
approach. We find that as the cluster size increases, the electronic structure
undergoes a transition from molecular behavior to nanoparticle behavior at a
cluster size of 140 atoms (diameter \,nm). Above this cluster size
the step-like electronic structure, evident as several features in the
imaginary part of the polarizability of all clusters smaller than
Ag, gives way to a dominant plasmon peak localized at
wavelengths 350\,nm 600\,nm. It is, thus, at this length-scale
that the conduction electrons' collective oscillations that are responsible for
plasmonic resonances begin to dominate the opto-electronic properties of silver
nanoclusters
IMG 305 - PEMBUNGKUSAN MAKANAN NOV.05.
We discuss the use of Agent-based Modelling for the development and testing of theories about emergent social phenomena in marketing and the social sciences in general. We address both theoretical aspects about the types of phenomena that are suitably addressed with this approach and practical guidelines to help plan and structure the development of a theory about the causes of such a phenomenon in conjunction with a matching ABM. We argue that research about complex social phenomena is still largely fundamental research and therefore an iterative and cyclical development process of both theory and model is to be expected. To better anticipate and manage this process, we provide theoretical and practical guidelines. These may help to identify and structure the domain of candidate explanations for a social phenomenon, and furthermore assist the process of model implementation and subsequent development. The main goal of this paper was to make research on complex social systems more accessible and help anticipate and structure the research process
Emerging CO2 capture systems
In 2005, the IPCC SRCCS recognized the large potential for developing and scaling up a wide range of emerging CO2 capture technologies that promised to deliver lower energy penalties and cost. These included new energy conversion technologies such as chemical looping and novel capture systems based on the use of solid sorbents or membrane-based separation systems. In the last 10 years, a substantial body of scientific and technical literature on these topics has been produced from a large number of R&D projects worldwide, trying to demonstrate these concepts at increasing pilot scales, test and model the performance of key components at bench scale, investigate and develop improved functional materials, optimize the full process schemes with a view to a wide range of industrial applications, and to carry out more rigorous cost studies etc. This paper presents a general and critical review of the state of the art of these emerging CO2 capture technologies paying special attention to specific process routes that have undergone a substantial increase in technical readiness level toward the large scales required by any CO2 capture system
Recommended from our members
A UNIX device driver for a Translink II Transputer board
A UNIX device driver for a TransLink II Transputer board is described. A complete listing of the code is presented. The device driver allows a transputer array to be used with the A/UX operating system
Recommended from our members
The electrostatic wake of a superthermal test electron in a magnetized plasma
The electrostatic potential is determined for a test electron with {upsilon}{sub {parallel}} {much gt} {upsilon}{sub Te}, in a uniform magnetized plasma ({omega}{sub ce} {much gt} {omega}{sub pe}). In the frame of the test electron, part of the spatially oscillatory potential has spherical symmetry over the hemisphere to the rear of the electron and is zero ahead of the electron. A second part of different character, which makes the potential continuous at the plane containing the electron, is oscillatory in the radial direction but decreases almost monotonically in the axial direction
- …