22 research outputs found

    Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence

    Get PDF
    Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH4), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO2) and CH4 exchange along sites that constitute a ~1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH4 exchange in July (123 ± 71 mg CH4–C m−2 d−1) was observed in features that have been thawed for 30 to 70 (\u3c100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH4–C m−2 d−1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH4–C m−2 d−1 in July). Carbon lost via CH4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH4 emission, CO2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH4 dynamics

    Vulnerability of high latitude soil organic carbon in North America to disturbance

    Get PDF
    This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool\u27s character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research

    Stream dissolved organic matter in permafrost regions shows surprising compositional similarities but negative priming and nutrient effects

    Get PDF
    Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28-day incubations. We incubated late-summer stream water from 23 locations nested in seven northern or high-altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two-way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.Peer reviewe

    Methane Emissions From Oceans, Coasts, and Freshwater Habitats: New Perspectives and Feedbacks On Climate

    No full text
    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanographygathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue

    Watershed carbon yield derived from gauge observations and river network connectivity in the United States

    No full text
    Abstract River networks play a critical role in the global carbon cycle. Although global/continental scale riverine carbon cycle studies demonstrate the significance of rivers and streams for linking land and coastal regions, the lack of spatially distributed riverine carbon load data represents a gap for quantifying riverine carbon net gain or net loss in different regions, understanding mechanisms and factors that influence the riverine carbon cycle, and testing simulations of aquatic carbon cycle models at fine scales. Here, we (1) derive the riverine load of particulate organic carbon (POC) and dissolved organic carbon (DOC) for over 1,000 hydrologic stations across the Conterminous United States (CONUS) and (2) use the river network connectivity information for over 80,000 catchment units within the National Hydrography Dataset Plus (NHDPlus) to estimate riverine POC and DOC net gain or net loss for watersheds controlled between upstream-downstream hydrologic stations. The new riverine carbon load and watershed net gain/loss represent a unique contribution to support future studies for better understanding and quantification of riverine carbon cycles
    corecore