181 research outputs found

    The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa

    Medication administration errors for older people in long-term residential care

    Get PDF
    Background Older people in long-term residential care are at increased risk of medication errors. The purpose of this study was to evaluate a computerised barcode medication management system designed to improve drug administrations in residential and nursing homes, including comparison of error rates and staff awareness in both settings. Methods All medication administrations were recorded prospectively for 345 older residents in thirteen care homes during a 3-month period using the computerised system. Staff were surveyed to identify their awareness of administration errors prior to system introduction. Overall, 188,249 attempts to administer medication were analysed to determine the prevalence of potential medication administration errors (MAEs). Error classifications included attempts to administer medication at the wrong time, to the wrong person or discontinued medication. Analysis compared data at residential and nursing home level and care and nursing staff groups. Results Typically each resident was exposed to 206 medication administration episodes every month and received nine different drugs. Administration episodes were more numerous (p < 0.01) in nursing homes (226.7 per resident) than in residential homes (198.7). Prior to technology introduction, only 12% of staff administering drugs reported they were aware of administration errors being averted in their care home. Following technology introduction, 2,289 potential MAEs were recorded over three months. The most common MAE was attempting to give medication at the wrong time. On average each resident was exposed to 6.6 potential errors. In total, 90% of residents were exposed to at least one MAE with over half (52%) exposed to serious errors such as attempts to give medication to the wrong resident. MAEs rates were significantly lower (p < 0.01) in residential homes than nursing homes. The level of non-compliance with system alerts was low in both settings (0.075% of administrations) demonstrating virtually complete error avoidance. Conclusion Potentially inappropriate administration of medication is a serious problem in long-term residential care. A computerised barcode system can accurately and automatically detect inappropriate attempts to administer drugs to residents. This tool can reliably be used by care staff as well as nurses to improve quality of care and patient safety

    Evolution of complexity in the zebrafish synapse proteome

    Get PDF
    The proteome of human brain synapses is highly complex and mutated in over 130 diseases. This complexity arose from two whole genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases, however its synapse proteome is uncharacterised and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterisation of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the Post Synaptic Density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ~1000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate vertebrate species evolved distinct synapse types and functions. The datasets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases

    Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin

    Get PDF
    INTRODUCTION: In order to study metastatic disease, we employed the use of two related polyomavirus middle T transgenic mouse tumor transplant models of mammary carcinoma (termed Met and Db) that display significant differences in metastatic potential. METHODS: Through suppression subtractive hybridization coupled to the microarray, we found osteopontin (OPN) to be a highly expressed gene in the tumors of the metastatic mouse model, and a lowly expressed gene in the tumors of the lowly metastatic mouse model. We further analyzed the role of OPN in this model by examining sense and antisense constructs using in vitro and in vivo methods. RESULTS: With in vivo metastasis assays, the antisense Met cells showed no metastatic tumor formation to the lungs of recipient mice, while wild-type Met cells, with higher levels of OPN, showed significant amounts of metastasis. The Db cells showed a significantly reduced metastasis rate in the in vivo metastasis assay as compared with the Met cells. Db cells with enforced overexpression of OPN showed elevated levels of OPN but did not demonstrate an increase in the rate of metastasis compared with the wild-type Db cells. CONCLUSIONS: We conclude that OPN is an essential regulator of the metastatic phenotype seen in polyomavirus middle T-induced mammary tumors. Yet OPN expression alone is not sufficient to cause metastasis. These data suggest a link between metastasis and phosphatidylinositol-3-kinase-mediated transcriptional upregulation of OPN, but additional phosphatidylinositol-3-kinase-regulated genes may be essential in precipitating the metastasis phenotype in the polyomavirus middle T model

    Assessing the organizational context for EBP implementation: the development and validity testing of the Implementation Climate Scale (ICS)

    Get PDF
    BACKGROUND: Although the importance of the organizational environment for implementing evidence-based practices (EBP) has been widely recognized, there are limited options for measuring implementation climate in public sector health settings. The goal of this research was to develop and test a measure of EBP implementation climate that would both capture a broad range of issues important for effective EBP implementation and be of practical use to researchers and managers seeking to understand and improve the implementation of EBPs. METHODS: Participants were 630 clinicians working in 128 work groups in 32 US-based mental health agencies. Items to measure climate for EBP implementation were developed based on past literature on implementation climate and other strategic climates and in consultation with experts on the implementation of EBPs in mental health settings. The sample was randomly split at the work group level of analysis; half of the sample was used for exploratory factor analysis (EFA), and the other half was used for confirmatory factor analysis (CFA). The entire sample was utilized for additional analyses assessing the reliability, support for level of aggregation, and construct-based evidence of validity. RESULTS: The EFA resulted in a final factor structure of six dimensions for the Implementation Climate Scale (ICS): 1) focus on EBP, 2) educational support for EBP, 3) recognition for EBP, 4) rewards for EBP, 5) selection for EBP, and 6) selection for openness. This structure was supported in the other half of the sample using CFA. Additional analyses supported the reliability and construct-based evidence of validity for the ICS, as well as the aggregation of the measure to the work group level. CONCLUSIONS: The ICS is a very brief (18 item) and pragmatic measure of a strategic climate for EBP implementation. It captures six dimensions of the organizational context that indicate to employees the extent to which their organization prioritizes and values the successful implementation of EBPs. The ICS can be used by researchers to better understand the role of the organizational context on implementation outcomes and by organizations to evaluate their current climate as they consider how to improve the likelihood of implementation success. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13012-014-0157-1) contains supplementary material, which is available to authorized users

    Prader-Willi syndrome: A primer for clinicians

    Get PDF
    The advent of sensitive genetic testing modalities for the diagnosis of Prader-Willi syndrome has helped to define not only the phenotypic features of the syndrome associated with the various genotypes but also to anticipate clinical and psychological problems that occur at each stage during the life span. With advances in hormone replacement therapy, particularly growth hormone children born in circumstances where therapy is available are expected to have an improved quality of life as compared to those born prior to growth hormone

    Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    Get PDF
    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells

    SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

    Get PDF
    Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation
    • …
    corecore