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Evolution of complexity in the zebrafish synapse
proteome
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The proteome of human brain synapses is highly complex and is mutated in over 130

diseases. This complexity arose from two whole-genome duplications early in the vertebrate

lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is

uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced

complexity is unknown. We report the characterization of the proteomes and ultrastructure of

central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD

increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of

zebrafish has lower complexity than mammals. A highly conserved set of B1,000 proteins is

shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific

proteome differences indicate that vertebrate species evolved distinct synapse types and

functions. The data sets are a resource for a wide range of studies and have important

implications for the use of zebrafish in modelling human synaptic diseases.
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S
ynapses are the hallmark of the central nervous system.
Although synapses were originally considered to be simple
connectors between neurons, they are now recognized to be

highly sophisticated computational units built from proteomes
containing in excess of 1,000 proteins that regulate the
behavioural repertoire1–4. Proteomic studies revealed that
genetic disruption of postsynaptic density (PSD) proteins
results in over 130 human mental and neurological disorders5,6.
These disorders are now known as synaptopathies7,8 and include
complex genetic disorders such as intellectual disability, autism
spectrum disorders and schizophrenia5,9,10.

Comparative proteomic and genomic approaches have been
used to study the evolutionary origins of vertebrate postsynaptic
complexity. The major classes of vertebrate synapse proteins
evolved in unicellular eukaryotes, and these proteins were
recruited into synapses in early invertebrates11. Subsequent
whole-genome duplications (WGD) have played a major role in
generating and shaping the complexity of vertebrate synapse
proteomes. Two WGDs in early vertebrates resulted in a major
expansion of the synapse proteome, which distinguishes them
from invertebrate synapses. This event, which occurred B550
million years ago12, generated ohnologues (paralogues arising
from WGDs) that subsequently diversified, potentially
contributing to the enhanced cognitive abilities and behavioural
repertoire of vertebrates2. Importantly, there was another WGD
B300 million years ago13 in the major clade of the fish lineage
known as the teleost-specific genome duplication (TSGD).
Although the TSGD increased the number of protein-coding
genes in zebrafish14 and other fish compared to mammals, it is
unknown whether this influenced synapse proteome complexity.
While the mammalian synaptic proteome has been characterized,
the absence of similar data from teleosts limits our knowledge on
the evolution of synapses in vertebrates and the roles of WGDs.

The freshwater fish Danio rerio (zebrafish) is a teleost that is
now widely used in neuroscience for modelling human genetic
brain disorders including those that disrupt synapse proteins15–17.
Here we report the first characterization of the ultrastructure,
proteome composition and evolution of zebrafish central nervous
synapses. The proteome of synaptosomes and the PSD of zebrafish
and mice were analysed in parallel and their complexity compared.
Surprisingly, despite zebrafish having an extra WGD the PSD
proteome was less complex when compared with mammals. We
identify a core ‘vertebrate PSD’ (vPSD) that corresponds to the
ancestral postsynaptic machinery common to all vertebrates and
conserved ultrastructural features. We have also identified proteins
that are only present in the mouse proteome, representing
molecular innovations either acquired by mammals after
divergence of the fish lineage or specifically lost from the fish
lineage. We have made these data freely available in a database and
web resource that includes links to a wide variety of related
biomedical data sets (http://www.genes2cognition.org/publications/
zebrafish-prot/).

Results
Ultrastructure of zebrafish synapses. Before analysing the
synapse proteome we performed an ultrastructural analysis of
central synapses in zebrafish to address two questions: do zeb-
rafish synapses contain PSDs (a prerequisite for their biochemical
isolation), and, if so, do they show any morphological features
that are conserved with mammals? Moreover, to our knowledge,
the ultrastructure of zebrafish brain synapses has not been
previously described, although studies in other bony fish
species were reported several decades ago18–22. We therefore
examined the four main regions of the zebrafish brain with
transmission electron microscopy (Fig. 1, Supplementary Note 1,

Supplementary Figs 1–5 and Supplementary Table 1). In olfactory
bulb, telencephalon, midbrain and hindbrain (Fig. 1b)
asymmetric synapses presented structures equivalent to
mammalian PSDs (Fig. 1c). While PSDs were identified across
the entire transverse sections of olfactory bulb and telencephalon,
in midbrain and hindbrain these were restricted to the optic
tectum and cerebellar corpus, respectively, which are layered,
cortex-like structures located in the most dorsal part of the brain
(Supplementary Figs 3 and 4). Asymmetric synapses from the
olfactory bulb were morphologically similar to those found in
mammals and other bony fish species20,21 (Fig. 1c,d and
Supplementary Fig. 1). The zebrafish olfactory bulb presented
the characteristic dendrodendritic synapses23 of this brain region,
which contains synaptic vesicles on both sides of the synaptic cleft
(Fig. 1d and Supplementary Fig. 1). Synapses in the telencephalon
also showed the prototypical characteristics of mammalian
synapses with PSDs present in spine-like structures (Fig. 1e and
Supplementary Fig. 2). At the level of the optic tectum, PSDs were
mainly present in the medial layers of this structure
(Supplementary Fig. 3b, orange delimited area). Presynaptic
boutons in the optic tectum appeared to make synaptic contacts
directly on dendritic shafts rather than on spines as suggested by
the small diameter of postsynaptic elements and the presence of
microtubule-like structures beneath the PSD (Fig. 1f and
Supplementary Fig. 3).

Synapses in the cerebellar corpus showed distinct features and
could be classified into different types. Although we observed
synapses with flat PSDs and aligned pre- and postsynaptic
membranes (Fig. 1g and Supplementary Fig. 5a), these were a
minority (13%, Supplementary Fig. 5c). Most synapses presented
highly curved PSDs and a presynaptic element surrounding the
postsynaptic spine (Fig. 1h–i and Supplementary Figs 4 and 5b).
In mammals, cerebellar glutamatergic synapses present a
presynaptic element that partially surrounds the postsynaptic
structure24; however, this feature is greatly enhanced in the
zebrafish cerebellum. When measuring the arch length of curved
PSDs and their postsynaptic elements these can be divided into
short and long PSDs (Supplementary Fig. 5d–i). Thus, at the
zebrafish cerebellar corpus we could identify three PSD shapes:
‘flat’, ‘round-short’ and ‘round-long’ (Supplementary Fig. 5 and
Supplementary Table 1). Finally, we compared PSD length and
the area between all four brain regions and found that flat PSDs
and cerebellum round-short PSDs have similar sizes and areas
(Supplementary Fig. 5j–l), while telencephalon and cerebellum
round-long PSDs were larger, with the cerebellum PSDs being the
largest. These studies show a diversity of synapse ultrastructure in
zebrafish and characteristic features shared with mammalian
synapses.

Proteomic profiling of zebrafish and mouse synapses. We
purified synaptosomal (SYN) and PSD fractions in triplicate from
mouse and zebrafish brains using identical protocols, generating
equivalent yields and expected PSD enrichments (Supplementary
Fig. 6). These data indicate that the performance of the bio-
chemical methods was equivalent between species, although sto-
chastic effects on small numbers of proteins cannot be fully ruled
out. Quantitative mass spectrometry-based proteomic analysis
(see Methods, Supplementary Note 2 and Supplementary Fig. 7)
identified a total of 3,579 and 3,840 proteins in triplicate for
mouse and zebrafish, respectively (Fig. 2a and Supplementary
Data 1 and 2). In order to define which proteins are enriched/
depleted in PSDs compared to their parent SYN fractions, we
used a label-free quantification and statistical analysis of the mass
spectrometry data. This identified proteins significantly enriched
in SYN (depleted from PSD), which were removed from the final
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Figure 1 | Transmission electron microscopy of zebrafish asymmetric synapses in four different brain areas. (a) Evolutionary tree of the vertebrate

lineage with timescale in million years (my). The occurrence of the two WGD events common to all vertebrates (2R-WGD) and specific to teleosts (TSGD) are

indicated by blue lines. (b) Schematic representation of the zebrafish brain with the four regions studied (CC, cerebellar corpus; O, olfactory bulb; OT, optic

tectum; T, telencephalon) and of an excitatory synapse. Synaptosomes are formed by the axon terminal and the dendritic spine, which are separated from their

corresponding neurons during tissue processing. The location of the PSD is also indicated. (c) Asymmetric synapse from the olfactory bulb. A red asterisk and a

red arrow indicate the location of presynaptic vesicles and the PSD, respectively. Scale bar, 200 nm. (d) An asymmetric dendrodendritic synapse of the

olfactory bulb (framed by a red dotted square) is shown. Asterisks indicate pre- and post-synaptic vesicles. The PSD is indicated by a red arrow. Scale bar,

500 nm. (e) Asymmetric synapses from the telencephalon. Red asterisks and arrows indicate the location of presynaptic vesicles and PSDs, respectively. The

area corresponding to postsynaptic spine-like structures is filled with pink. Scale bar, 500 nm. (f) Asymmetric synapses from the optic tectum. Red asterisks

and arrows indicate the location of presynaptic vesicles and the PSD, respectively. Red arrowheads indicate microtubule location within thin dendritic-like

projection. The area of a thin dendritic-like projection, where synapses are formed, is filled with purple. Scale bar, 500 nm. (g) Flat (standard) asymmetric

synapse from the cerebellar corpus. A red asterisk and a red arrow indicate the location of presynaptic vesicles and the PSD, respectively. Scale bar, 500 nm.

(h) Asymmetric synapse from the medial part of the cerebellar corpus showing the extent at which the presynaptic element (highlighted in purple) surrounds

the dendritic spine. Scale bar, 200 nm. (i) Micrograph displaying the morphology of most abundant asymmetric synapses from the cerebellar corpus.

Red asterisks and arrows indicate the location of presynaptic vesicles and the PSD, respectively. Scale bar, 500 nm.
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Figure 2 | Mouse and zebrafish synaptic proteome. (a) Venn diagrams of mouse (red) and zebrafish (yellow) proteins identified in synaptosomal and

PSD preparations, indicating the percentage of proteins found in both fractions. The total number of proteins identified in each species is also indicated.

(b,c) Volcano plots showing quantitative enrichment and depletion of proteins between synaptosomes and postsynaptic densities purified from mouse

(b) and zebrafish brain (c). Enriched or depleted proteins were identified from statistical analysis of triplicate PSD and synaptosome data sets for

each species using t-testing and a Permutation-based false discovery rate of 0.05. (d) Venn diagrams of mouse (red) and zebrafish (yellow) proteins

found depleted or enriched in the PSD when compared with the synaptosomal fraction. The percentage of proteins found with equal abundance at the

synaptosomal and PSD fraction is also indicated. (e) Scheme indicating the number of mouse synaptosomal and PSD proteins found only in one of the two

fractions, depleted or enriched at the PSD or found in equal abundance in both fractions. (f) Scheme indicating the number of zebrafish synaptosomal and

PSD proteins found only in one of the two fractions, depleted or enriched at the PSD or found in equal abundance in both fractions.
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list of PSD components as potential purification contaminants
(Fig. 2b–d and Supplementary Data 1 and 2). Thus, we document
3,223 and 2,128 proteins in mouse SYN and PSD fractions,
respectively, and 3,640 and 1,758 proteins in the corresponding
zebrafish structures (Fig. 2e,f). The greater number of zebrafish
SYN proteins compared to mouse likely reflects the greater
number of protein-coding genes in the zebrafish genome, which
is supported by the finding that the proportion of SYN genes
relative to genome size is 14% in both species. Surprisingly, the
zebrafish PSD proteome was 17% smaller than mouse
(Po1E� 06, binomial test). This difference is still significant if
the PSD is defined as the sum of zebrafish proteins exclusively
found in the PSD or significantly enriched in it (P¼ 0.0003,
binomial test). The zebrafish PSD was only 48% of the SYN
proteome compared to the 66% in mouse. Hence, despite the
TSGD and the concomitant expansion of the zebrafish synapse
proteome, the zebrafish PSD is of smaller size than that found in
mammals.

Teleost genome duplication expanded synapse protein families.
Many well-known families of synaptic proteins were found with
an expanded number of ohnologues in the zebrafish. For example,
zebrafish show twice as many ionotropic glutamate receptor
subunits in the NMDA (N-methyl-D-aspartate) and AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)
families and more scaffold proteins in the PSD95/Dlg family (six
in zebrafish and four in mice, Supplementary Data 2). We
therefore asked whether family expansion was a common feature
among SYN and PSD proteins in zebrafish. Using the Ensembl
Families classification we found that both zebrafish SYN (Fig. 3a)
and PSD (Fig. 3b) proteomes contain protein families with a
significantly higher number of components.

We next asked whether synapse genes were more likely to be
retained after the TSGD than genes expressed elsewhere in the brain
or in other tissues. We calculated the fraction of proteins belonging
to the orthology types (zebrafish:mouse: 1:1, 1:many, many:1,
many:many and unique to each species; Fig. 3c). The many:1
category is increased in synaptosomes and PSD protein families
compared to the genome-wide ratio, indicating that synapse genes
have been retained at higher frequencies after the TSGD than seen
in the genome as a whole. To quantify these differences we
determined the number of orthologues in each species and
calculated the ratio of zebrafish:mouse orthologues (Fig. 3d). While
most genes have a 1:1 ratio between species, a clear peak appears at
2:1 representing genes with double the number of orthologues in
zebrafish compared to a small peak at 1:2 representing genes
duplicated in mouse. This ratio is also seen in other teleosts but not
in the Spotted Gar (Lepisosteus oculatus), a fish whose lineage
diverged before the teleost-specific WGD25 (Supplementary Fig. 8).
Examples of the increased ratio of orthologues in key synaptic
proteins among fish species but not in the Gar, and other vertebrate
and invertebrate species, are shown in Fig. 3e. These data support
the assumption that the trend for gene family expansion in zebrafish
is a legacy of the TSGD rather than by specific loss of genes in
mammalian genomes. The distribution of orthologue ratios for SYN
and PSD proteomes is statistically different to the whole-genome
proteomes, and the PSD is even statistically different to the brain
proteome. No statistical difference was seen between SYN and PSD
proteomes (Fig. 3d). These results show that following the TSGD
zebrafish synapse proteome-encoding genes, especially PSD ones,
were more frequently retained as duplicates.

Functional complexity of the synapse proteome. To understand
the functional implications of the different complexity of zebra-
fish and mouse synapse proteomes, we examined protein

diversity. We first considered high-level categories corresponding
to protein cellular location and molecular function from the
ingenuity pathway analysis (IPA) knowledgebase functional
classification system: no significant differences were observed
between the percentages of protein location or function, indi-
cating a general conservation of the molecular characteristics of
SYN and PSD proteomes between species (Fig. 4a,b and
Supplementary Data 3). To corroborate this finding we compared
enriched functional categories from two other classification sys-
tems: the Gene Ontology (GO-Slim) and the Panther Protein
Class ontology. Most of the significantly enriched functional
categories were found in both species (Fig. 4c and Supplementary
Data 3), supporting the conclusion that the overall functionality
of mammalian and teleost synapse proteomes is conserved.

Nevertheless, as we observed differences in the number of PSD
proteins between species, we asked whether there might be
differences in the number of protein families, using the Ensembl
Protein Family annotation. Zebrafish showed fewer families in
both SYN and PSD proteomes even when accounting for
proteome size (Table 1 and Supplementary Data 4). To correct
for possible genome annotation differences between species, we
obtained Ensembl Protein Family IDs from mouse orthologues of
zebrafish proteins and repeated the analysis, obtaining the same
results (Table 1). The number of zebrafish PSD families was
significantly lower than expected for zebrafish PSD proteins or
mouse orthologues of zebrafish PSD proteins (Table 1). Thus, the
lower PSD complexity in zebrafish results from fewer protein
families.

Since protein domains contribute to functional complexity, we
examined domain composition (number of unique protein domain
types/protein, Supplementary Data 5) in synaptic proteins,
mammalian and zebrafish synaptic brain proteomes26–29 and all
mouse and zebrafish coding proteins (Supplementary Data 6). We
did not find a statistically significant difference of domain
complexity between species for any of the proteomes. However,
within species we found that the SYN and PSD proteomes do have
higher complexity than brain or genome (number of unique
protein domain types/protein mouse: genome¼ 1.46, brain¼ 1.50,
SYN¼ 1.66, PSD¼ 1.64; zebrafish: genome¼ 1.46, brain¼ 1.57,
SYN¼ 1.67, PSD¼ 1.75), suggesting that SYN and PSD represent
specialized proteomes with higher functional complexity compared
to the brain or whole proteome. Cumulative distributions
(Fig. 4d,e) show significant increase in unique domains
per protein in SYN and PSD compared to brain and genome
data sets.

Species specialization in the PSD. We next focussed our atten-
tion on identifying those biological functions that were specific to
either zebrafish or mouse PSDs. The zebrafish-specific PSD
(Zf-sPSD, 523 proteins) and mouse-specific PSD (Mm-sPSD, 745
proteins) proteomes were examined for enrichment of GO terms
from biological process and Cellular Component categories. To
avoid potentially misleading differences between species arising
from the biochemical fractionation, for a protein to be considered
species-specific it had to be absent from both the PSD and SYN
proteomes in the reciprocal species. To account for the possibly
less complete annotation of the zebrafish genome, the enrichment
analysis with zebrafish proteins was done twice, first using
Zf-sPSD proteins against the zebrafish genome and later using
mouse orthologues of Zf-sPSD against the mouse genome. The
final list of zebrafish-enriched terms corresponded to the sum of
terms enriched in both analyses.

A large difference in the number of significantly enriched terms
was found between the two species-specific proteomes: the Mm-
sPSD presented 97 biological process and 66 cellular component-
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zebrafish. Top row shows data for synaptosomes and bottom row for PSD proteomes. The exact percentage of overlap is indicated. (d) Cumulative

frequency distribution plots of individual protein innovation index (number of unique domain types per protein) for each proteome in mouse. Statistically

significant comparisons between pairs of distributions (two-tailed Kolmogorov–Smirnov test applied to distributions) are shown at the legend. ***Po0.001,

**Po0.01, *Po0.05; nonsignificant comparisons are not shown. (e) Cumulative frequency distribution plots of individual protein innovation index (number

of unique domain types per protein) for each proteome in zebrafish. Statistically significant comparisons between pairs of distributions (two-tailed

Kolmogorov–Smirnov test applied to distributions) are shown at the legend. ***Po0.001, **Po0.01, *Po0.05; nonsignificant comparisons are not shown.
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enriched terms, while only 17 and 8 were found in Zf-sPSD. Most
(80%) Mm-sPSD proteins presented an orthologue in the
zebrafish genome (Supplementary Note 3 and Supplementary
Fig. 9), indicating that gene loss in zebrafish or gene gain in
mouse is not the only factor driving PSD functional differences
observed between species. Terms enriched in zebrafish were not
obviously relevant to synaptic biology, whereas Mm-sPSD
proteins were enriched in terms such as ‘postsynaptic density’,
‘synapse’ or ‘regulation of synapse structure or activity’
(Supplementary Data 7). This is consistent with specialized
synaptic proteins found in mammalian synapses being absent
from the Zf-sPSD. In addition to these proteins, most of the other
mouse-enriched terms fall into a few functions embracing
endocytosis, vesicle-mediated intracellular trafficking, protein
localization to the plasma membrane and actin filament-based
processes (Supplementary Data 7).

Among proteins involved in vesicle traffic and endocytosis,
particularly noticeable was the differential presence at the mouse
PSD of many proteins forming SNARE complexes. These
included syntaxins, synaptobrevins (vamps) and ‘soluble
N-ethylmaleimide-sensitive factor (NSF) attachment proteins’
(SNAP) as well as syntaxin-binding proteins (Sec1/Munc18) and
synaptotagmins (Fig. 5a). Interestingly, syntaxins and syntaxin-
interacting proteins enriched in the mouse PSD are involved in
endocytic pathways, while those participating in presynaptic
exocytosis were depleted from it (Fig. 5a), suggesting that the
former are not biochemical contaminants. These included
proteins with very well-established presynaptic functions, such
as Snap25 or Vamp2. While these might be biochemical
contaminants of the PSD preparation, several recent publica-
tions30,31 have given evidence for their participation in
postsynaptic processes. Thus, their localization in the PSD
cannot be excluded. The mouse PSD was also specifically
enriched in other complexes involved in endocytosis, including
constituents of the ‘endosomal-sorting complexes required for
transport’ (ESCRT) and ‘homotypic fusion and vacuole protein
sorting’ (HOPS), and other key proteins for vesicle-mediated
protein transport (Fig. 5b,c). To further explore this observation,
we looked for these proteins in the PSD from human5,32,33,
rat34–37 and an independent and recently generated mouse PSD
proteome38. In all species we found more representatives of all
these protein complexes than in zebrafish, with the exception of
ESCRT components in rat (Supplementary Data 8).

To further investigate the depletion of some mammalian
proteins from the zebrafish PSD, we asked whether the
orthologous genes encoding these proteins were present in the
zebrafish genome and, if so, whether they were expressed at low
levels. Of the 745 mouse PSD proteins absent from zebrafish
synaptic proteomes (SYNþ PSD), 80% have orthologues in the

zebrafish genome (Supplementary Fig. 9). To examine the
possibility that those might be expressed at low levels in the
zebrafish brain, we examined the 84 proteins shown in Fig. 5
using RNA sequencing data and found that the expression of
most of these genes (63/84¼ 75%) is low (less than 10 transcripts
per million (TPM)) or very low (less than 1 TPM; Fig. 5 and
Supplementary Fig. 10). The percentage of lowly expressed genes
in this protein-depleted group is greater than what we see for all
SYN- and PSD-encoding genes, where the percentage of
detectable genes with TPMo10 is 51% and 53%, respectively.
This suggests that proteins depleted from the SYN and PSD of
zebrafish show a corresponding low expression of encoding
mRNA in the brain. Together, these findings indicate that both
low levels of expression and absence of orthologues are
mechanisms contributing to the depletion of synapse proteins
from the zebrafish synapse.

To further test the hypothesis that mouse-specific PSD proteins
added new functionalities to the PSD, we repeated the GO
enrichment analysis with human5,32,33 and rat34–37 PSD proteins
absent from the zebrafish synapse (Supplementary Data 7). For
this extended analysis we also combined our mouse data with
PSD proteins identified in other mouse studies38–40. We then
looked for those terms significantly enriched in all species
examined (Supplementary Data 7). We again found many
enriched GO terms related to vesicle-mediated protein traffic,
endocytosis and localization to the plasma membrane (Table 2).
The rest of the enriched terms could be grouped into those related
to actin filament organization, cation transport through the
membrane and cell junctions involving the actin cytoskeleton
(adherens junctions; Table 2). Finally, we looked for enriched
KEGG pathways among PSD-specific proteins, as KEGG uses an
annotation system different from that of GO. Again, we found
that mammalian-specific PSD proteins are involved in
endocytosis, regulation of actin cytoskeleton and adherens
junctions among other pathways (Supplementary Data 7).
Altogether, these analyses suggest that the zebrafish PSD has a
reduced functional repertoire related to vesicle-mediated
trafficking than that of mammals.

A conserved vertebrate synapse proteome. The comparison of
vertebrate synapse proteomes from species separated from a
common ancestor for over 400 million years provides an
opportunity to identify the conserved elements within this highly
complex structure, which will likely underpin the function of
most vertebrates. We therefore sought to define the common set
of vertebrate PSD proteins (vPSD) by identifying zebrafish PSD
proteins with an orthologue in the mouse PSD. Accordingly, the
vPSD consists of 1,101 proteins (Supplementary Data 9),
including proteins from 12 major functional groups such as
cytoskeletal proteins, ribosomal proteins, kinases, phosphatases,
adenylate cyclase or small GTPases among others (Fig. 6a).

We next performed a set of analyses that show PSD protein
sequences are remarkably conserved across vertebrates. First,
SYN and PSD protein conservation was significantly higher than
the average protein encoded in the genome in both species
(median % of identity between zebrafish and mouse: for all
zebrafish proteins, 49; SYN, 70; PSD, 72; Supplementary Fig. 11a;
median % of protein identity between mouse and zebrafish for all
mouse proteins, 49; SYN, 70; PSD, 70; Supplementary Fig. 11b).
Second, we compared SYN and PSD protein conservation over
B90 million years since humans and mice shared a common
ancestor, and found higher identity in PSD compared to SYN
proteins (Supplementary Fig. 11c) or in PSD-enriched proteins as
compared to PSD-depleted ones (Supplementary Fig. 11d). Third,
SYN and PSD were significantly more conserved than other

Table 1 | Protein families among mouse and zebrafish SYN
and PSD proteins.

Proteins Ensembl
families

Families/
protein

Mouse SYN 3,223 2,552 0.79
Zebrafish SYN 3,640 2,354 0.65
Mouse orthologues of
zebrafish SYN

3,138 2,410 0.77

Mouse PSD 2,128 1,688 0.79
Zebrafish PSD 1,758 1,089* 0.62
Mouse orthologues of
zebrafish PSD

1,556 1,128*** 0.72

PSD, postsynaptic density; SYN, synaptosomal.
*Po0.05 and ***Po0.0001.
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proteins expressed in the brain (Supplementary Fig. 11e–h),
which already exhibit high conservation41. Fourth, the vPSD
showed a greater level of conservation than the entire PSD
(Fig. 6b,c). This observation held true when the vPSD was
obtained by comparing zebrafish PSD proteins with human5,32,33,
mouse38–40 and rat34–37 PSD proteomes (median vPSD protein

identity 66% and median mammalian-specific PSD protein
identity 61.5%; significantly different, Mann–Whitney U-test,
Po0.0001). Fifth, we asked whether the species-specific PSD
(Zf-sPSD and Mm-sPSD) proteins also showed this high
conservation, and found that they were significantly lower, even
when compared with whole-brain proteomes (Fig. 6b,c). To
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Figure 5 | Differential expression of PSD proteins involved in intracellular vesicle biogenesis between mouse and zebrafish. For each protein the mouse

orthologue gene name is given. Proteomic data are provided for both species. For proteomic data, a white square denotes that we did not detect that

protein, a blue square identifies proteins found in synaptosomes but not in PSDs and a red square identifies proteins found at the PSD. The average mRNA

expression (mean transcripts per million (TPM) from four whole-brain biological replicates) was determined for each gene (for TPMs of individual samples,

see Supplementary Fig. 10). For mRNA-sequencing data, a white box denotes a mean expression of o1 TPM, a pale green box o10 TPM and dark green

410 TPM. (a) Proteins involved in vesicle fusion with membranes, including SNARE complex proteins: Syntaxins, Vamps and SNAPs, syntaxin-binding

proteins (Sec1/Munc18) and Synaptotagmins. (b) Proteins form the HOPS complex involved in membrane vesicle tethering to membranes. (c) Proteins
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further validate these findings we took PSD proteins specific to
each species and eliminated those found in the SYN fraction of
the other species. Again, vPSD proteins showed higher
percentages of protein identity than Zf-sPSD and Mm-sPSD
(Fig. 6d). Thus, the vPSD is a highly conserved set of B1,000
proteins common to vertebrate species that shared an ancestor
B450 million years ago.

Discussion
Our study of zebrafish synapse proteomes has led to a number of
new insights into the evolution of synapses. First, retention of
duplicated synapse genes following the TSGD has generated an
increase in molecular complexity in zebrafish. Second, despite this
increase in proteome size, the PSD complexity was lower in
zebrafish than in mammals. Third, the characterization of a
conserved vPSD indicates that high molecular complexity is a core
feature across bony fish, amphibians, reptiles, birds and mammals.
Fourth, lineage-specific changes in proteins around this vPSD
result in species-specific differences in synapse composition.

Our data show that vertebrate synapse proteomes have been
shaped by multiple WGDs11,42 including the TSGD around 300
million years ago13 and two WGDs 150 million years earlier.
Following a WGD, most duplicated genes accumulate deleterious
mutations becoming pseudogenes43 so that only a small number of

the originally duplicated genes are retained. For instance, the last
update of the zebrafish genome identifies 3,440 gene pairs
(ohnologues) remaining from the TSGD14, representing a retention
of B25% of the novel duplicates. Nevertheless, when considering the
number of paralogues found in zebrafish synaptic protein families we
found a significant increase compared with mouse, indicating that
after the TSGD many synaptic genes have been retained in the
zebrafish genome. Indeed, we have shown that zebrafish genes
expressed in synapses have been retained more frequently after the
TSGD than other coding genes in the genome or other genes
expressed in the brain, suggesting their functional importance.
Consistent with this, studies reporting the types of genes retained in
vertebrates after the two rounds of WGD show that among those
more commonly retained are genes involved in synaptic function44.
Our data support the idea that genes performing synaptic functions
are retained at higher frequencies following successive rounds of
WGD. This is consistent with the view that their sub- and/or neo-
functionalization45 expanded synaptic molecular complexity and
diversity, contributing to improved fitness.

Consistent with the conservation of the vPSD we found that
many ultrastructural features of the postsynaptic density observed
in mammals were found in zebrafish. Asymmetric synapses
(containing PSDs) in olfactory bulb and telencephalon were
particularly similar to those observed in mammals. However,
some of the synapses identified in the optic tectum and

Table 2 | Functional annotation of mammalian PSD proteins absent from the zebrafish synapse.

Human Rat Mouse

Fold
change*

P value# Fold
change*

P value# Fold
change*

P value#

Related to vesicle-mediated protein traffic and localization
Regulation of vesicle-mediated transport (GO:0060627) 3.3 1.3E�04 3.4 1.7E�03 2.3 3.0E�04
Vesicle-mediated transport (GO:0016192) 2.9 5.8E� 10 2.4 7.1E�03 2.2 1.7E� 12
Cytoplasmic transport (GO:0016482) 2.9 5.0E�06 2.6 1.9E�02 2.0 1.2E�04
Establishment of protein localization (GO:0045184) 2.9 1.2E� 12 2.2 1.7E�03 2.2 2.5E� 15
Protein transport (GO:0015031) 2.8 2.7E� 10 2.3 4.1E�03 2.2 3.5E� 14
Intracellular transport (GO:0046907) 2.7 9.9E� 10 2.5 6.3E�06 2.2 4.0E� 15
Endosome (GO:0005768) 2.2 3.3E�02 2.5 3.2E�03 2.3 6.8E� 10

Related to protein location at plasma membrane
Extrinsic component cytoplasmic side of plasma membrane

(GO:0031234)
5.8 2.8E�04 5.9 5.2E�03 3.5 9.4E�04

Extrinsic component of plasma membrane (GO:0019897) 5.1 1.1E�04 5.3 8.1E�04 3.3 6.5E�05
Cytoplasmic side of plasma membrane (GO:0009898) 4.5 5.3E�04 6.1 2.6E�06 3.7 1.1E�07
Cytoplasmic side of membrane (GO:0098562) 4.2 1.4E�03 5.7 7.7E�06 3.5 2.1E�07
Extrinsic component of membrane (GO:0019898) 3.3 6.3E�03 3.6 1.1E�02 2.5 2.8E�04

Related to actin filaments organization
Regulation of actin filament length (GO:0030832) 4.6 2.8E�03 4.8 1.7E�02 2.9 9.7E�03
Actin cytoskeleton organization (GO:0030036) 4.0 1.8E�08 3.3 3.7E�03 2.4 7.9E�06
Actin filament-based process (GO:0030029) 4.0 1.3E�09 3.4 5.9E�04 2.6 3.8E�08
Regulation of cytoskeleton organization (GO:0051493) 3.4 8.1E�06 3.2 3.9E�03 2.7 3.0E�09

Related to cation transport
Regulation of cation transmembrane transport (GO:1904062) 4.4 1.1E�04 4.6 1.2E�03 2.7 2.7E�03
Regulation of metal ion transport (GO:0010959) 3.0 2.3E�02 3.4 1.7E�02 2.2 4.2E�03
Transmembrane transporter complex (GO:1902495) 3.0 2.8E�02 3.4 1.1E�02 2.7 5.0E�06
Transporter complex (GO:1990351) 2.9 3.8E�02 3.3 1.5E�02 2.7 1.2E�06

Related to cell junction
Adherens junction (GO:0005912) 3.9 1.8E�09 3.3 2.1E�04 2.2 1.3E�04
Cell–substrate junction (GO:0030055) 3.9 1.1E�07 3.7 3.8E�05 2.0 1.7E�02
Anchoring junction (GO:0070161) 3.7 6.3E�09 3.3 1.3E�04 2.2 9.8E�05
Cell junction (GO:0030054) 2.9 2.0E� 13 3.0 3.0E� 12 2.4 2.1E� 22

GO, Gene Ontology; PSD, postsynaptic density.
*Fold enrichment of observed proteins per GO term.
#Binomial statistics P value.
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cerebellum presented particular morphologies. These have also
been reported in other bony fish species18,19,22, further
supporting synaptic diversity across vertebrates. Particularly
remarkable were asymmetric synapses from the optic tectum,
which show a very clear PSD but not an equally obvious dendritic
spine, as the presynaptic boutons contacted thin structures that
might correspond with dendritic shafts. Similar observations have
been made in a few other teleost species18,19. Yet, in the superior
colliculus of mammals, the homologous brain region to the fish
optic tectum, asymmetric synapses are mainly formed on
dendritic spines46. Since previous studies in mice show that
synapse proteins appearing after the two WGDs contributed to
synaptic diversity42, future neuroanatomical studies could
determine whether synapse proteins arising from the TSGD are
allocated into different individual synapses in the zebrafish brain.

We unexpectedly found several lines of evidence that highlight
the specialization of the synapse proteome. While studying the
frequency of new domains found per protein, we observed a
strong increase in the PSD and synaptosome proteins (in both
mouse and zebrafish) compared with whole-brain proteomes or
all protein-coding genes in the genome. Second, in previous work
we have reported that PSD proteins have been subjected to very
high levels of sequence conservation during mammalian evolu-
tion5,39, and the present study indicates that this evolutionary
constraint has occurred throughout vertebrate evolution, and not
only for postsynaptic proteins, but for synaptic molecules overall.
This high conservation suggests that the proteins are important
for fitness, and consistent with this, disease-causing mutations
have been documented in several hundred different genes
encoding the human postsynaptic proteome. We suggest that
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Figure 6 | Conservation of the core vertebrate PSD machinery. (a) Pie chart of main GO-Slim Molecular Function categories enriched among vPSD

proteins. (b) Box plots for the percentage of protein identity since the last common ancestor between zebrafish and mouse of zebrafish PSD proteins,

PSD components found in both species (vPSD), Zf-sPSD and a zebrafish brain proteome29. Distributions compared using the Mann–Whitney U-test

(***Po0.001). (c) Box plots for the percentage of protein identity since the last common ancestor between zebrafish and mouse of mouse PSD proteins,

PSD components found in both species (vPSD), Mm-sPSD and a mouse brain proteome26. Distributions compared using the Mann–Whitney U-test

(***Po0.001). (d) Percentage of protein identity for individual proteins found only in zebrafish PSD (yellow), in both species PSD (white) and only in

mouse PSD (red). Red lines represent the median percentage of protein identity for two zebrafish (a (ref. 29) and b (ref. 28)) and a mouse (c (ref. 26))

whole-brain proteomes.
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the vPSD data set will be particularly valuable for future human
genetic studies and behavioural genetic screens in zebrafish.

The identification of mammalian-specific PSD proteins, which
were absent from the zebrafish synapse, opens new lines of
investigation into the mammalian brain. No relevant differences
were observed when comparing human and mouse postsynaptic
proteomes39, suggesting that it may be a key difference between
mammals and fish. Our observations that there were fewer
orthologues and low levels of mRNA expression suggest that gene
loss and transcriptional regulatory changes are contributing
mechanisms. In addition, there may be post-translational
mechanisms such as protein stability. Although we cannot fully
exclude the contribution of technical reasons, the observed
enrichment in particular synaptic functions in the set of
mammalian-specific PSD proteins suggests that there are
biologically relevant differences between the zebrafish and
mouse PSD. Particularly noticeable was the high number of
SNARE complex components (Syntaxins, Vamps and SNAPs)
and associated proteins (Sec1/Munc18s and Synaptotagmins).
Importantly, only Syntaxins and Sec1/Munc18s proteins with a
clear role in endocytosis47 were found in the mouse PSD, and
several of these (Syntaxin 12 (ref. 48), SNAP23 (ref. 49) or
SNAP47 (ref. 50)) play a role in AMPA receptor trafficking. In
addition, HOPS and ESCRT complexes, which also participate in
the endocytic machinery51,52, were also found enriched among
Mm-sPSD proteins and are also found in the PSD of other
mammalian species. A recent study shows that some ESCRT
components are at the mouse PSD, where they contribute to the
regulation of synaptic plasticity and confer specific structural
characteristics to the postsynaptic membrane53. To extend and
validate the analysis of Mm-sPSD we repeated the analysis with
human and rat and confirmed that proteins incorporated into the
PSD after the fish divergence added functionality related to vesicle-
mediated protein traffic, protein location to the plasma membrane
and actin filament organization as well as the regulation of cation
transport and establishment of adherens junctions.

Our findings have several implications for the use of zebrafish
as models of human brain disease. Zebrafish are used to model
neurodegeneration15, depression54, autism17 and schizophrenia55

among others56 and for neuropharmacological16 and
neurotoxicology57 research. These disorders and interventions
directly and indirectly influence synapse protein structure and
function. Therefore, it is potentially important to consider the
following issues: the additional zebrafish-specific paralogues
arising from the TSGD will increase redundancy and
potentially mask phenotypes in mutations within that gene
family. The additional paralogues may also have undergone
species-specific neofunctionalization resulting in species-specific
phenotypes. The species-specific differences in overall complexity
alters many classes of proteins at multiple levels of signalling
pathways, and therefore the postsynaptic signalling networks will
have a different structure, potentially resulting in differential
robustness and signalling capacity. It is also interesting to
consider the finding that the vPSD is highly conserved, and
perhaps this subset of the synapse proteome will be preferred
when modelling human mutations. While these considerations
may be important for studies aimed at modelling or treating
human diseases, we also wish to highlight that these differences
will be of interest in the study of fundamental synaptic physiology
and behaviour of zebrafish. The demonstration of paralogue-
specific behavioural functions in mice and conserved phenotypes
in humans and mice2,3 illustrate that the synapse proteome
complexity of zebrafish will be a major factor in their behavioural
repertoire.

Synapse proteome data from mice and humans have been used
in a wide range of applications. For example, the mammalian data

have been used in many human genetic studies including those
showing that schizophrenia is primarily a synaptic disorder where
multiple susceptibility genes converge on the PSD10,58,59. Mouse
proteome data have been used to show that the mRNAs that
interact with the Fragile X Mental Retardation Protein
predominantly target the PSD60. PSD proteome data were used
to study the behavioural and physiological phenotypes controlled
by synapses using the Mouse and Human phenotype ontologies5.
Thus, we expect that the zebrafish synapse proteome data will
be a valuable resource that can be exploited with many
orthogonal data sets and technical approaches. All data and
tables from this study are freely available through the Genes
to Cognition database (http://www.genes2cognition.org/
publications/zebrafish-prot/).

Methods
Ethics statement. Mouse (Mus musculus) and zebrafish (Danio rerio) were treated
in accordance with the British Home Office regulations (Animal Scientific Proce-
dures Act, 1986; Project Licence PPL80/2,337 to Professor Seth Grant). Animal
protocols were approved by the local ethical committee on animal experimentation
at the Wellcome Trust Sanger Institute. Animals were housed in The Wellcome
Trust Sanger Institute animal facility.

Zebrafish and mouse brain samples. We used whole-brain samples dissected
from male and female adult D. rerio and 6–8-week-old mice from the 129 Strain.
After dissection brain tissue was immediately frozen in liquid nitrogen and stored
at � 80 �C until being used for extraction of synaptosomes and PSDs. Zebrafish
were from the following strains: H Longfin, Tubingen Longfin, Tubingen, AB,
WIK, LON and SAT. Before dissection, fish were killed by an overdose of the fish
anaesthetic Tricane at 0.1% (w/v) and mice were killed by cervical dislocation.
Three independent biological replicas were prepared for both zebrafish and mouse
brain samples, and each contained 0.7–1 g of tissue. All mouse and zebrafish
sample-processing steps were performed in parallel and peptide fractions from all
samples analysed back-to-back by mass spectrometry within just over a week.
Performance and sensitivity were monitored throughout. Sample size was estab-
lished based on the standard in the field. No method was used to randomize
animals between experimental groups; neither investigators were blinded to the
species origin of each sample.

Electron microscopy. Electron microscopy was performed with the brain from
two adult specimens. In each case the following brain regions were studied:
olfactory bulb, telencephalon, optic tectum and cerebellum. Zebrafish brains were
dissected under cold primary fixative containing 2% paraformaldehyde and 2.5%
glutaraldehyde in 0.1 M sodium cacodylate buffer at pH 7.42. Each brain was
halved in mid-sagittal section and then separated in transverse sections into tele-
ncephalon (including olfactory bulb), optic tectum, cerebellum and medulla. These
four compartments were fixed for the remainder of 2 h, rinsed and post-fixed in 1%
osmium tetroxide for an hour, mordanted with 1% tannic acid and dehydrated in
an ethanol series, en bloc staining with 2% uranyl acetate at the 30% stage. Fol-
lowing immersion in propylene oxide, the brain segments were embedded in
TAAB 812 resin. Semi-thin sections (0.5 mm) were cut on a Leica UCT ultra-
microtome and stained with toluidine blue on a microscope slide. Images were
recorded on a Zeiss Axiovert CCD (charge-coupled device) camera and areas
selected for 50 nm ultrathin sectioning. Thin sections were collected on copper/
palladium grids and contrasted with uranyl acetate and lead citrate before viewing
on an FEI 120kV Spirit Biotwin TEM and recording CCD images on an F4.15 Tietz
camera. PSD lengths and areas were measured on electron microscopy images with
the FiJi image-processing package61. Groups were compared through the median
lengths and areas, and significant differences were analysed through the
Kruskal–Wallis non-parametric test. All analyses were performed with the SPSS
statistics software (IBM).

Isolation and characterization of synaptosomes and PSDs. Mouse (M. mus-
culus) and zebrafish (D. rerio) samples were fractionated in parallel, using pre-
viously reported methods39. Briefly, B1 g of whole-brain tissue was homogenized
9:1 (v:w) using a glass–teflon tissue grinder in a buffer containing Tris 50 mM, pH
7.4, 0.3 M sucrose, 5 mM EDTA and the protease inhibitors 1 mM
phenylmethylsulphonyl fluoride (PMSF), 2 mM Aprotinin and 2 mM Leupeptin.
The homogenate was centrifuged at 800g to pellet nuclei and cell debris; the
resulting supernatant was then centrifuged at 16,000g and the pellet was
resuspended 5:1(v:w) in Tris 50 mM, pH 8.1, 5 mM EDTA, 1 mM PMSF, 2 mM
Aprotinin and 2 mM Leupeptin, and chilled in ice for 45 min. Sucrose was added to
a final 34% (w/w) concentration. A sucrose gradient was prepared with equal
volumes of the following layers (bottom to top): sample, Tris 50 mM, pH 7.4,
0.85 M sucrose and Tris 50 mM, pH 7.4, 0.3 M sucrose. This gradient was then
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ultracentrifuged for 2 h at 60,000g and the interphase between 34 and 28.5%
sucrose was collected, diluted to 10% sucrose with Tris 50 mM, pH 7.4 and
centrifuged again at 48,000g during 30 min. Pellet was resuspended in 1 ml of Tris
50 mM, pH 7.4 to generate the SYN fraction. A range of 5–10% of this solution was
set apart and later used for proteomics profiling. To obtain the final PSD fraction
the remaining synapstosomal fraction was mixed with an equal volume of 3%
Triton X-100 and chilled in ice for 30 min. Sample was finally layered on top of
10 ml of Tris 50 mM, pH 7.4, 0.85 M sucrose and centrifuged at 104,000g for 1 h to
produce a pellet containing the PSD fractions that are solubilized in Tris 50 mM,
pH 7.41% SDS. Enrichment of postsynaptic proteins in postsynaptic density
fractions was assessed by immunoblotting using the postsynaptic marker protein
PSD95 (antibody used: Affinity, ref. MA1-045).

Mass spectrometry-based proteomics. In-gel digestion was performed as
reported previously5. Extracted peptides (six fractions per sample) were analysed
using nanoLC-MS/MS on a LTQ-Orbitrap Velos (Thermo Fisher) hybrid mass
spectrometer equipped with a nanospray source, coupled with an Ultimate 3000
Nano/Capillary LC System (Dionex). The system was controlled with Xcalibur 2.1
(Thermo Fisher) and DCMSLink 2.08 (Dionex). Peptides were desalted on-line
using a micro-Precolumn cartridge (C18 Pepmap 100, LC Packings) and then
separated using a 120 min reverse phase gradient (4–32% acetonitrile/0.1% formic
acid) on an EASY-Spray column, 50 cm� 75mm ID, PepMap C18, 2 mm particles,
100 Å pore size (Thermo). The LTQ-Orbitrap Velos was operated with a cycle of
one MS (in the Orbitrap) acquired at a resolution of 60,000 at m/z 400, with the top
10 most abundant multiply charged (2þ and higher) ions in a given
chromatographic window subjected to MS/MS fragmentation in the linear ion trap.
An FTMS target values of 1e6 and an ion trap MSn target value of 5e3 was used
and with the lock mass (445.120025) enabled. Maximum FTMS scan accumulation
time of 150 ms and maximum ion trap MSn scan accumulation time of 100 ms was
used. Dynamic exclusion was enabled with a repeat duration of 45 s with an
exclusion list of 500 and exclusion duration of 30 s.

MS data were analysed using MaxQuant62 version 1.5.2.8. Data were searched
against mouse (GRCm38.p3 (GCA_000001635.5)) or zebrafish GRCz10
(GCA_000002035.3) UniProt sequence databases (downloaded June 2015) using
the following search parameters: trypsin with a maximum of two missed cleavages,
7 p.p.m. for MS mass tolerance, 0.5 Da for MS/MS mass tolerance, with acetyl
(protein N-term) and oxidation (M) set as variable modifications and
carbamidomethyl (C) as a fixed modification. A protein false discovery rate (FDR)
of 0.01 and a peptide FDR of 0.01 were used for identification level cutoffs.
Variance in protein abundance data was similar within species replicas and
between species. In addition, for a protein to be included in the final set of SYN or
PSD proteins it had to be identified with at least one unique peptide in each of the
three SYN or PSD replicas. Label-free quantification (LFQ) was performed using
MaxQuant LFQ intensities63, and statistical analysis was performed using Perseus64

as follows. The data set was filtered to remove proteins with less than two valid
LFQ values in at least one group (PSD or SYN). LFQ intensities were log2-
transformed and missing values were imputed using a downshifted normal
distribution (width 0.3, downshift 1.8). Next t-testing was performed with
correction for multiple hypothesis testing using a permutation-based FDR of 0.05.

Gene homology. Gene orthology relationships between zebrafish and mouse and
percentage of protein sequence identity were taken from Ensembl database65

version 81, containing the last update of the zebrafish genome14. Statistical
comparison of protein identities between different proteomic sets was performed
using the Mann–Whitney U-test.

Functional classification of synaptic proteins. For the functional classification
with high-level categories, Ensembl mouse identifiers for mouse proteins or
orthologous mouse identifiers for zebrafish proteins were integrated with func-
tional annotation from the Ingenuity knowledgebase66, using IPA (QIAGEN
Redwood City www.qiagen.com/ingenuity). Information of predicted cellular
localization (cytoplasm, extracellular space, nucleus, plasma membrane and other)
and IPA protein types (cytokine, enzyme, G-protein coupled receptor (GPCR), ion
channel, kinase, peptidase, phosphatase, transcription regulator, translation
regulator, transporter and other) were obtained. Counts, comparisons and plots of
proteins within each species and category were conducted using R. To reproducibly
call orthologous sequences between species for a large data set, the Ensembl
biomart database was queried using the bioconductor package biomaRt67. All
orthologues were obtained and counted in each species to determine orthology
type, either 1:1, 1:many, many:1, many:many or unique to a species (no orthologue
known). For the analysis of all protein families, we used Ensembl identifiers of
mouse, zebrafish and mouse orthologues of zebrafish proteins to retrieve Ensembl
Protein Families from Ensembl database65 version 81, containing the last update of
the zebrafish genome14. Families with an unknown function were not considered.

Domain analysis. Protein domain composition for all genes in the mouse and
zebrafish genome data sets were obtained via biomart; subsets corresponding to
brain, SYN and PSD data sets were obtained from this single data set. The total
counts for domains for each protein were determined, and the unique protein types
were determined by removing duplicate domains within any single protein. The

complexity of the proteome was calculated by comparing the cumulative frequency
of unique domains per protein within a proteome. Distributions were compared
using a two-tailed Kolmogorov–Smirnov test applied to cumulative frequency
distributions. All statistical calculations were conducted in R.

GO enrichment analysis. Zebrafish and mouse synaptic proteins were annotated
for ‘Cellular Component’ and ‘Biological Process’ gene ontology68 terms using the
Panther database and analysis tools69. Binomial statistics were used to compare GO
term over-representation using the whole genome as the background set, and the
Bonferroni test was used to correct for multiple testing. To account for the lower
level of GO annotations found in zebrafish, Zf-sPSD proteins were searched for
enrichment against the zebrafish and mouse genomes. Terms found enriched in
both species were not further considered. Equivalent enrichment analysis was also
performed with categories from the KEGG pathway database70.

Analysis of protein sequence identity. Percentage of protein sequence identity
between mouse and zebrafish or mouse and human proteins was taken from
Ensembl database65 version 81. Differences between protein sequence identity were
calculated with Mann–Whitney U-test.

RNA sequencing. Four whole brains were removed and placed in RNAlater before
RNA isolated using the Qiagen RNeasy Plus Mini Kit, and 150 bp paired end
Illumina sequencing was conducted at Barts and the London Genome Centre.
Adapters were removed from the raw reads using Cutadapt. TopHat2 was used as a
wrapper for the alignment programme Bowtie2 to map sequence reads to the
reference genome (Danio_rerio.GRCz10.86 obtained via Ensembl), reads were
converted into counts using HTSeq and converted to TPM. For comparison of each
gene, the average expression (mean TPM from four whole-brain biological repli-
cates) was determined for each gene. Where multiple transcripts for a given gene
are known, these were combined to result in a single mean TPM per gene.

Data availability. We have constructed a freely available database and web
resource that includes links to a wide variety of biomedical data sets: (http://
www.genes2cognition.org/publications/zebrafish/).

Mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE71 partner repository with the data
set identifier PXD005630.
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Conceptualization: À.B. and S.G.N.G.; formal analysis: R.R.-V. and R.D.E.; investigation:
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