50 research outputs found

    Science, Community, and Culture: A Holistic Approach to Ecological Research and Education

    Get PDF
    Global biodiversity has declined at an alarming rate over the past century as a result of many complex human-induced environmental changes. Standardized surveys have historically been used to identify drivers of species declines, but such studies are often resource-intensive, resulting in significant spatial and temporal data gaps when researchers lack the resources necessary to maintain such studies. One promising solution for overcoming gaps in standardized studies is the integration of species observations by community members (e.g., community science). Along with improving modeling techniques to address biodiversity declines, the education of future ecologists on the importance of Indigenous ecological knowledge, robust scientific research, and community engagement in addressing myriad environmental problems is also imperative in addressing ecological challenges. Thus, my goals are 1) determine the efficacy of integrating standardized survey data with community-sourced observations to create species distribution models (SDMs) for species with varying responses to human-mediated environmental change and 2) create a curriculum that synergizes Indigenous ecological knowledge, scientific research techniques, and community science to establish a more holistic learning experience. I used data from Snapshot USA, a standardized nation-wide camera trap survey, and iNaturalist, an online community science platform, to create species distribution models and hands-on ecology lessons. My results demonstrate that integrated SDMs do produce informative predictions of the environmental factors that influence species distributions and provide a scaffolded framework for creating a more holistic approach to ecological education

    Potency enhancement of the κ-opioid receptor antagonist probe ML140 through sulfonamide constraint utilizing a tetrahydroisoquinoline motif

    Get PDF
    Optimization of the sulfonamide-based kappa opioid receptor (KOR) antagonist probe molecule ML140 through constraint of the sulfonamide nitrogen within a tetrahydroisoquinoline moiety afforded a marked increase in potency. This strategy, when combined with additional structure-activity relationship exploration, has led to a compound only six-fold less potent than norBNI, a widely utilized KOR antagonist tool compound, but significantly more synthetically accessible. The new optimized probe is suitably potent for use as an in vivo tool to investigate the therapeutic potential of KOR antagonists

    Overcoming Barriers to Skills Training in Borderline Personality Disorder: A Qualitative Interview Study

    Get PDF
    Despite evidence suggesting that skills training is an important mechanism of change in dialectical behaviour therapy, little research exploring facilitators and barriers to this process has been conducted. The study aimed to explore clients’ experiences of barriers to dialectical behaviour therapy skills training and how they felt they overcame these barriers, and to compare experiences between treatment completers and dropouts. In-depth qualitative interviews were conducted with 40 clients with borderline personality disorder who had attended a dialectical behaviour therapy programme. A thematic analysis of participants’ reported experiences found that key barriers to learning the skills were anxiety during the skills groups and difficulty understanding the material. Key barriers to using the skills were overwhelming emotions which left participants feeling unable or unwilling to use them. Key ways in which participants reported overcoming barriers to skills training were by sustaining their commitment to attending therapy and practising the skills, personalising the way they used them, and practising them so often that they became an integral part of their behavioural repertoire. Participants also highlighted a number of key ways in which they were supported with their skills training by other skills group members, the group therapists, their individual therapist, friends and family. Treatment dropouts were more likely than completers to describe anxiety during the skills groups as a barrier to learning, and were less likely to report overcoming barriers to skills training via the key processes outlined above. The findings of this qualitative study require replication, but could be used to generate hypotheses for testing in further research on barriers to skills training, how these relate to dropout, and how they can be overcome. The paper outlines several such suggestions for further research

    Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal ‘pop-up’

    Get PDF
    The eastern termination of the Himalayan orogen forms a structural syntaxis that is characterised by young (from 10 to < 1 Ma) mineral growth and cooling ages that document Late Miocene to Pleistocene structural, metamorphic, igneous and exhumation events. This region is a steep antiformal and in part domal structure that folds the suture zone between the Indian and Asian plates. It is dissected by the Yarlung Tsangpo, one of the major rivers of the eastern Himalayan–Tibet region, which becomes the Brahmaputra River in the Indian foreland basin before emptying into the Bay of Bengal. Exceptionally high relief and one of the deepest gorges on Earth have developed where the river's tortuous route crosses the Namche Barwa–Gyala Peri massif (> 7 km in elevation) in the core of the syntaxis. Very high erosion rates documented in sediment downstream of the gorge at the foot of the Himalaya contribute ~ 50% of total detritus to the sediment load of the Brahmaputra. The initiation of very high rates of exhumation has been attributed either to the extreme erosive power of a river flowing across a deforming indentor corner and the associated positive feedback, or to the geometry of the Indian plate indentor, with the corner being thrust beneath the Asian plate resulting in buckling which accommodates shortening; both processes may be important. The northern third of the syntaxis corresponds to a steep domal ‘pop-up’ structure bounded by the India–Asia suture on three sides and a thrust zone to the south. Within the dome, Greater Himalaya rocks equilibrated at ~ 800 °C and 25–30 km depth during the Miocene, with these conditions potentially persisting into the latest Miocene and possibly the Pliocene, with modest decompression prior to ~ 4 Ma. This domal ‘pop-up’ corresponds to the area of youngest bedrock ages on a wide variety of thermochronometers and geochronometers. In this paper we review the extensive scientific literature that has focused on the eastern syntaxis and provide new chronological data on its bedrock and erosion products to constrain the age of inception of the very rapid uplift and erosion. We then discuss its cause, with the ultimate aim to reconstruct the exhumation history of the syntaxis and discuss the tectonic context for its genesis. We use zircon and rutile U–Pb, white mica Ar–Ar and zircon fission track dating methods to extract age data from bedrock, Brahmaputra modern sediments (including an extensive compilation of modern detrital chronometry from the eastern Himalaya) and Neogene palaeo-Brahmaputra deposits of the Surma Basin (Bangladesh). Numerical modelling of heat flow and erosion is also used to model the path of rocks from peak metamorphic conditions of ~ 800 °C to < 250 °C. Our new data include U–Pb bedrock rutile ages as young as 1.4 Ma from the Namche Barwa massif and 0.4 Ma from the river downstream of the syntaxis. Combined with existing data, our new data and heat flow modelling show that: i) the detrital age signature of the modern syntaxis is unique within the eastern Himalayan region; ii) the rocks within the domal pop-up were > 575 ± 75 °C only 1–2 Myr ago; iii) the Neogene Surma Basin does not record evidence of the rise and erosion of the domal pop-up until latest Pliocene–Pleistocene time; iv) Pleistocene exhumation of the north-easternmost part of the syntaxis took place at rates of at least 4 km/Myr, with bedrock erosion of 12–21 km during the last 3 Ma; v) the inception of rapid syntaxial exhumation may have started as early as 7 Ma or as late as 3 Ma; and vi) the Yarlung Tsangpo is antecedent and subsequently distorted by the developing antiform. Together our data and modelling demonstrate that the domal pop-up with its exceptional erosion and topographic relief is likely a Pleistocene feature that overprinted earlier structural and metamorphic events typical of Himalayan evolution. Keywords: Eastern Himalayan syntaxis; Namche Barwa; Surma Basin; Yarlung Tsangpo–Brahmaputra; U–Pb rutile dating; Thermal modellin

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Integration of Multiple Datasets to Evaluate Red Fox Distribution

    No full text
    To address declining global biodiversity, large-scale and long-term standardized wildlife surveys allow biologists to directly compare data across time and space to identify drivers of species declines. However, standardized surveys are resource-intensive, often leading to significant data gaps. One source of abundant and inexpensive data are wildlife observations from the public (e.g., community/citizen science). When combined, community observations can provide wildlife data from areas that lack high-quality survey data, while standardized surveys can account for the opportunistic nature that makes community observations difficult to use in wildlife studies. Therefore, integrating high-quality survey data with abundant community observations may produce more accurate wildlife distribution models than models produced with either dataset alone. I aim to determine the efficacy of integrating standardized survey data with community-sourced observations to model the environmental factors that influence species distributions. I used data from Snapshot USA, a standardized nation-wide camera trap survey, and iNaturalist, an online platform for community members to upload wildlife observations, to compare red fox (Vulpes vulpes) distribution models created with both datasets. Preliminary results suggest that the Snapshot USA and iNaturalist datasets do produce differing red fox distribution models. Although analyses are ongoing, I expect to find that species distribution models created with integrated datasets will provide more accurate information on environmental factors influencing species distributions than models created with Snapshot USA or iNaturalist datasets alone. The framework I establish to integrate standardized wildlife surveys with community-generated data will be used to create more accurate distribution models for species of conservation concern
    corecore