96 research outputs found

    The gene coding for PGC-1α modifies age at onset in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is one of the most common autosomal dominant inherited, neurodegenerative disorders. It is characterized by progressive motor, emotional and cognitive dysfunction. In addition metabolic abnormalities such as wasting and altered energy expenditure are increasingly recognized as clinical hallmarks of the disease. HD is caused by an unstable CAG repeat expansion in the HD gene (HTT), localized on chromosome 4p16.3. The number of CAG repeats in the HD gene is the main predictor of disease-onset, but the remaining variation is strongly heritable. Transcriptional dysregulation, mitochondrial dysfunction and enhanced oxidative stress have been implicated in the pathogenesis. Recent studies suggest that PGC-1α, a transcriptional master regulator of mitochondrial biogenesis and metabolism, is defective in HD. A genome wide search for modifier genes of HD age-of-onset had suggested linkage at chromosomal region 4p16-4p15, near the locus of PPARGC1A, the gene coding for PGC-1α. We now present data of 2-loci PPARGC1A block 2 haplotypes, showing an effect upon age-at-onset in 447 unrelated HD patients after statistical consideration of CAG repeat lengths in both HTT alleles. Block 1 haplotypes were not associated with the age-at-onset. Homozygosity for the 'protective' block 2 haplotype was associated with a significant delay in disease onset. To our knowledge this is the first study to show clinically relevant effects of the PGC-1α system on the course of Huntington's disease in humans

    A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-sectional Validation Study

    Get PDF
    BACKGROUND: Remote monitoring of Huntington disease (HD) signs and symptoms using digital technologies may enhance early clinical diagnosis and tracking of disease progression, guide treatment decisions, and monitor response to disease-modifying agents. Several recent studies in neurodegenerative diseases have demonstrated the feasibility of digital symptom monitoring. OBJECTIVE: The aim of this study was to evaluate a novel smartwatch- and smartphone-based digital monitoring platform to remotely monitor signs and symptoms of HD. METHODS: This analysis aimed to determine the feasibility and reliability of the Roche HD Digital Monitoring Platform over a 4-week period and cross-sectional validity over a 2-week interval. Key criteria assessed were feasibility, evaluated by adherence and quality control failure rates; test-retest reliability; known-groups validity; and convergent validity of sensor-based measures with existing clinical measures. Data from 3 studies were used: the predrug screening phase of an open-label extension study evaluating tominersen (NCT03342053) and 2 untreated cohorts-the HD Natural History Study (NCT03664804) and the Digital-HD study. Across these studies, controls (n=20) and individuals with premanifest (n=20) or manifest (n=179) HD completed 6 motor and 2 cognitive tests at home and in the clinic. RESULTS: Participants in the open-label extension study, the HD Natural History Study, and the Digital-HD study completed 89.95% (1164/1294), 72.01% (2025/2812), and 68.98% (1454/2108) of the active tests, respectively. All sensor-based features showed good to excellent test-retest reliability (intraclass correlation coefficient 0.89-0.98) and generally low quality control failure rates. Good overall convergent validity of sensor-derived features to Unified HD Rating Scale outcomes and good overall known-groups validity among controls, premanifest, and manifest participants were observed. Among participants with manifest HD, the digital cognitive tests demonstrated the strongest correlations with analogous in-clinic tests (Pearson correlation coefficient 0.79-0.90). CONCLUSIONS: These results show the potential of the HD Digital Monitoring Platform to provide reliable, valid, continuous remote monitoring of HD symptoms, facilitating the evaluation of novel treatments and enhanced clinical monitoring and care for individuals with HD

    Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase

    Get PDF
    Objective To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers. Methods The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA. Results CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16). CHIT1 and YKL-40 were increased in gALS (p<0.001, n=65) whereas GFAP was not affected. Patients with ALS carrying a CHIT1 polymorphism had lower CHIT1 concentrations in CSF (-80%) whereas this polymorphism had no influence on disease severity. In gFTD (n=23), increased YKL-40 and GFAP were observed (p<0.05), whereas CHIT1 was nearly not affected. The same profile as in gALS and gFTD was observed in sALS (n=64/70) and sFTD (n=20/26). CSF and blood concentrations correlated moderately (CHIT1, r=0.51) to weak (YKL-40, r=0.30, GFAP, r=0.39). Blood concentrations of these three markers were not significantly altered in any of the groups except CHIT1 in gALS of the Ulm cohort (p<0.05). Conclusion Our data indicate that neuroinflammation is linked to the symptomatic phase of ALS/FTD and shows a similar pattern in sporadic and genetic cases. ALS and FTD are characterised by a different neuroinflammatory profile, which might be one driver of the diverse presentations of the ALS/FTD syndrome

    Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion

    Get PDF
    Objectives: The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation. Methods We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156). Results In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR. Conclusions: This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes

    A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS

    Get PDF
    CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but their mode of action is unclear. In a 29-year-old patient with rapid disease progression, we discovered a novel mutation (Q108P) in a conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH) domain. The aggressive clinical phenotype prompted us to probe its pathogenicity. Unlike the wild-type protein, mitochondrial import of CHCHD10 Q108P was blocked nearly completely resulting in diffuse cytoplasmic localization and reduced stability. Other CHCHD10 variants reported in patients showed impaired mitochondrial import (C122R) or clustering within mitochondria (especially G66V and E127K) often associated with reduced expression. Truncation experiments suggest mitochondrial import of CHCHD10 is mediated by the CHCH domain rather than the proposed N-terminal mitochondrial targeting signal. Knockdown of Mia40, which introduces disulfide bonds into CHCH domain proteins, blocked mitochondrial import of CHCHD10. Overexpression of Mia40 rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation. Since reduction in CHCHD10 inhibits respiration, mutations in its CHCH domain may cause aggressive disease by impairing mitochondrial import. Our data suggest Mia40 upregulation as a potential therapeutic salvage pathway

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Mechanisms and modifiers of energy metabolism in ALS and Huntington disease

    No full text
    The present cumulative habilitation treatise summarizes my work on the metabolic underpinnings of neurodegenerative diseases. The work focuses on two paradigmatic neurodegenerative conditions, amyotrophic lateral sclerosis (ALS) and Huntington disease (HD). My overall goal was to exploit similarities and differences between HD and ALS to advance the understanding of neurodegeneration in general. The in vitro experiments, transgenic animal studies and human clinico-genetic studies described below led me to focus on dysregulation of the energy metabolism as a shared disease mechanism. A central finding of my thesis work is that in both conditions, HD and ALS the metabolic master switch PGC-1 alpha plays a pivotal role modifying disease progression and survival. This discovery directly and somewhat unexpectedly links transcriptional dysregulation and mitochondrial dysfunction, two aspects of neurodegeneration that were previously thought to be unrelated. As the disruption of the PGC-1 alpha pathway is recapitulated in transgenic model systems of both diseases, further research is possible (and necessary). This will help clarify the exact molecular mechanisms of metabolic dysregulation in neurodegeneration and thus contribute to defining new druggable therapeutic targets

    The psychopharmacology of Huntington disease

    No full text
    Huntington disease (HD) is a hereditary neurodegenerative disorder caused by an expanded cytosine–adenine–guanine triplet repeat in the huntingtin gene. The current diagnosis is based on the presence of typical motor signs in combination with a positive gene test. The motor onset of the disease is usually between 30 and 50 years of age, and the disease then progresses over around 20 more years. Nonmotor symptoms and signs such as cognitive decline, metabolic dysfunction, sleep disturbances, as well as psychiatric symptoms are common and can occur many years before motor onset. Psychiatric symptoms include irritability, apathy, depression, anxiety, and OCD. Although there exist no disease-modifying treatment, available pharmacologic drugs often offer significant symptom relief and improve quality of life. Today, there are only two drugs that are approved by the US Food and Drug Association for the treatment of HD. These are the dopamine-depleting drugs tetrabenazine and deutetrabenazine that both target motor symptoms. The current status of best clinical practice for HD is based on expert opinions as well as evidence and/or experience of treating similar symptoms in other conditions. In this chapter, we provide an overview of the complex clinical manifestations of HD and the commonly used psychopharmacologic treatments
    corecore