692 research outputs found

    Autophagy: A cyto-protective mechanism which prevents primary human hepatocyte apoptosis during oxidative stress

    Get PDF
    The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes

    Investigating Genetic Determinants of Plasma Inositol Status in Adult Humans

    Get PDF
    BACKGROUND: Myo-inositol (MI) is incorporated into numerous biomolecules, including phosphoinositides and inositol phosphates. Disturbance of inositol availability or metabolism is associated with various disorders, including neurological conditions and cancers, while supplemental MI has therapeutic potential in conditions such as depression, polycystic ovary syndrome and congenital anomalies. Inositol status may be influenced by diet, synthesis, transport, utilisation and catabolism. OBJECTIVES: We aimed to investigate potential genetic regulation of circulating MI status and to evaluate correlation of MI concentration with other metabolites. METHODS: Gas chromatography mass spectrometry was used to determine plasma MI concentration of more than 2,000 healthy, young adults (aged 18-28 years) from the Trinity Student Study. Genotyping data was used to test association of plasma MI with SNPs in candidate genes, encoding inositol transporters and synthesising enzymes, and test for genome-wide association. We evaluated potential correlation of plasma MI with D-chiro inositol, glucose and other metabolites by Spearman's rank correlation. RESULTS: Mean plasma MI showed a small but significant difference between males and females (28.5 and 26.9 µM, respectively). Candidate gene analysis revealed several nominally significant associations with plasma MI, most notably for SLC5A11, encoding a sodium-coupled inositol transporter, also known as SMIT2 (sodium-dependent myo-inositol transporter 2). However, these did not survive correction for multiple testing. Subsequent testing for genome-wide association with plasma MI did not identify associations of genome-wide significance (p < 5 × 10-8). However, 8 SNPs exceeded the threshold for suggestive significant association with plasma MI concentration (p < 1 × 10-5), 3 of which were located within or close to genes: MTDH, LAPTM4B and ZP2. We found significant positive correlation of plasma MI concentration with concentration of D-chiro-inositol and several other biochemicals including glucose, methionine, betaine, sarcosine and tryptophan. CONCLUSION: Our findings suggest potential for modulation of plasma MI in young adults by variation in SLC5A11 which is worthy of further investigation

    Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2).

    Get PDF
    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development.This work was supported by a Warwick Impact Fund (C.W., G.L.), the BBSRC (G.L. - BB/G01227X/1), (T.S., G.R., D.R. - BB/F008392/1), (D.P. - BB/M007529/1 and BB/M000176/1), Warwick Research Development Fund (C.W., G.L.) grant number (RD13301) and the Birmingham Science City Research Alliance (G.L).This is the final version of the article. It first appeared from ASBMB at http://dx.doi.org/10.1074/jbc.M114.62460

    Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series.

    Get PDF
    BACKGROUND: The causes of phenotypic heterogeneity in familial Alzheimer's disease with autosomal dominant inheritance are not well understood. We aimed to characterise clinical phenotypes and genetic associations with APP and PSEN1 mutations in symptomatic autosomal dominant familial Alzheimer's disease (ADAD). METHODS: We retrospectively analysed genotypic and phenotypic data (age at symptom onset, initial cognitive or behavioural symptoms, and presence of myoclonus, seizures, pyramidal signs, extrapyramidal signs, and cerebellar signs) from all individuals with ADAD due to APP or PSEN1 mutations seen at the Dementia Research Centre in London, UK. We examined the frequency of presenting symptoms and additional neurological features, investigated associations with age at symptom onset, APOE genotype, and mutation position, and explored phenotypic differences between APP and PSEN1 mutation carriers. The proportion of individuals presenting with various symptoms was analysed with descriptive statistics, stratified by mutation type. FINDINGS: Between July 1, 1987, and Oct 31, 2015, age at onset was recorded for 213 patients (168 with PSEN1 mutations and 45 with APP mutations), with detailed history and neurological examination findings available for 121 (85 with PSEN1 mutations and 36 with APP mutations). We identified 38 different PSEN1 mutations (four novel) and six APP mutations (one novel). Age at onset differed by mutation, with a younger onset for individuals with PSEN1 mutations than for those with APP mutations (mean age 43·6 years [SD 7·2] vs 50·4 years [SD 5·2], respectively, p<0·0001); within the PSEN1 group, 72% of age at onset variance was explained by the specific mutation. A cluster of five mutations with particularly early onset (mean age at onset <40 years) involving PSEN1's first hydrophilic loop suggests critical functional importance of this region. 71 (84%) individuals with PSEN1 mutations and 35 (97%) with APP mutations presented with amnestic symptoms, making atypical cognitive presentations significantly more common in PSEN1 mutation carriers (n=14; p=0·037). Myoclonus and seizures were the most common additional neurological features; individuals with myoclonus (40 [47%] with PSEN1 mutations and 12 [33%] with APP mutations) were significantly more likely to develop seizures (p=0·001 for PSEN1; p=0·036 for APP), which affected around a quarter of the patients in each group (20 [24%] and nine [25%], respectively). A number of patients with PSEN1 mutations had pyramidal (21 [25%]), extrapyramidal (12 [14%]), or cerebellar (three [4%]) signs. INTERPRETATION: ADAD phenotypes are heterogeneous, with both age at onset and clinical features being influenced by mutation position as well as causative gene. This highlights the importance of considering genetic testing in young patients with dementia and additional neurological features in order to appropriately diagnose and treat their symptoms, and of examining different mutation types separately in future research. FUNDING: Medical Research Council and National Institute for Health Research

    Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration.

    Get PDF
    OBJECTIVES: To investigate whether serum neurofilament light (NfL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity. METHODS: We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NfL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy. RESULTS: Nineteen of the asymptomatic participants were mutation carriers (mean EYO -9.6); 11 were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symptomatic (p < 0.0001) and presymptomatic mutation carriers (p = 0.007). Across all mutation carriers, serum NfL correlated with EYO (ρ = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (ρ = -0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (ρ = 0.79, p < 0.0001), baseline brain volume (ρ = -0.62, p = 0.0002), and whole-brain atrophy rate (ρ = 0.53, p = 0.01). CONCLUSIONS: Serum NfL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early AD-related neurodegeneration

    Clinical trial of laronidase in Hurler syndrome after hematopoietic cell transplantation.

    Get PDF
    BackgroundMucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH. The objective of this study was to evaluate the effects of laronidase on somatic outcomes of patients with MPS IH previously treated with HCT.MethodsThis 2-year open-label pilot study of laronidase included ten patients (age 5-13 years) who were at least 2 years post-HCT and donor engrafted. Outcomes were assessed semi-annually and compared to historic controls.ResultsThe two youngest participants had a statistically significant improvement in growth compared to controls. Development of persistent high-titer anti-drug antibodies (ADA) was associated with poorer 6-min walk test (6MWT) performance; when patients with high ADA titers were excluded, there was a significant improvement in the 6MWT in the remaining seven patients.ConclusionsLaronidase seemed to improve growth in participants &lt;8 years old, and 6MWT performance in participants without ADA. Given the small number of patients treated in this pilot study, additional study is needed before definitive conclusions can be made

    Multigenerational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior Health (MICEHAB): An Investigation of a Long Duration, Partial Gravity, Autonomous Rodent Colony

    Get PDF
    The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Unsupervised Analysis of Classical Biomedical Markers: Robustness and Medical Relevance of Patient Clustering Using Bioinformatics Tools

    Get PDF
    Motivation: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples. Method: Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set. Results: The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This coul
    corecore