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Summary
Background The causes of phenotypic heterogeneity in familial Alzheimer’s disease with autosomal dominant inheritance 
are not well understood. We aimed to characterise clinical phenotypes and genetic associations with APP and PSEN1 
mutations in symptomatic autosomal dominant familial Alzheimer’s disease (ADAD).

Methods We retrospectively analysed genotypic and phenotypic data (age at symptom onset, initial cognitive or 
behavioural symptoms, and presence of myoclonus, seizures, pyramidal signs, extrapyramidal signs, and cerebellar 
signs) from all individuals with ADAD due to APP or PSEN1 mutations seen at the Dementia Research Centre in 
London, UK. We examined the frequency of presenting symptoms and additional neurological features, investigated 
associations with age at symptom onset, APOE genotype, and mutation position, and explored phenotypic diff erences 
between APP and PSEN1 mutation carriers. The proportion of individuals presenting with various symptoms was 
analysed with descriptive statistics, stratifi ed by mutation type.

Findings Between July 1, 1987, and Oct 31, 2015, age at onset was recorded for 213 patients (168 with PSEN1 mutations 
and 45 with APP mutations), with detailed history and neurological examination fi ndings available for 121 (85 with 
PSEN1 mutations and 36 with APP mutations). We identifi ed 38 diff erent PSEN1 mutations (four novel) and six APP 
mutations (one novel). Age at onset diff ered by mutation, with a younger onset for individuals with PSEN1 mutations 
than for those with APP mutations (mean age 43·6 years [SD 7·2] vs 50·4 years [SD 5·2], respectively, p<0·0001); within 
the PSEN1 group, 72% of age at onset variance was explained by the specifi c mutation. A cluster of fi ve mutations with 
particularly early onset (mean age at onset <40 years) involving PSEN1’s fi rst hydrophilic loop suggests critical functional 
importance of this region. 71 (84%) individuals with PSEN1 mutations and 35 (97%) with APP mutations presented with 
amnestic symptoms, making atypical cognitive presentations signifi cantly more common in PSEN1 mutation carriers 
(n=14; p=0·037). Myoclonus and seizures were the most common additional neurological features; individuals with 
myoclonus (40 [47%] with PSEN1 mutations and 12 [33%] with APP mutations) were signifi cantly more likely to develop 
seizures (p=0·001 for PSEN1; p=0·036 for APP), which aff ected around a quarter of the patients in each group (20 [24%] 
and nine [25%], respectively). A number of patients with PSEN1 mutations had pyramidal (21 [25%]), extrapyramidal 
(12 [14%]), or cerebellar (three [4%]) signs.

Interpretation ADAD phenotypes are heterogeneous, with both age at onset and clinical features being infl uenced by 
mutation position as well as causative gene. This highlights the importance of considering genetic testing in young 
patients with dementia and additional neurological features in order to appropriately diagnose and treat their 
symptoms, and of examining diff erent mutation types separately in future research. 

Funding Medical Research Council and National Institute for Health Research.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.

Introduction
Alzheimer’s disease is the most common cause of 
dementia. In fewer than 1% of patients, Alzheimer’s 
disease is caused by autosomal dominant mutations in the 
presenilin 1 (PSEN1),1 presenilin 2 (PSEN2),2 or amyloid 
precursor protein (APP) genes.3 Autosomal dominant 
familial Alzheimer’s disease (ADAD) is considered to be 
clinically similar to sporadic disease (with the exception of 
younger age at onset) and both are characterised by 
progressive impairment of episodic memory. Although 
atypical phenotypes are seen in both familial and sporadic 
Alzheimer’s disease,4–6 relatively little is known about the 
proportion of individuals with ADAD who present with 

atypical cognitive symptoms, the prevalence of additional 
neurological features, or the relationships between 
genotype, phenotype, and the pathophysiological 
mechanisms that might underlie them.

Prevention trials for ADAD are underway and have 
stimulated research into biomarker changes in 
preclinical Alzheimer’s disease. However, these trials 
also necessitate better understanding of the natural 
history of Alzheimer’s disease in the symptomatic phase 
and of factors that infl uence age at onset. A recent meta-
analysis found that mutation type accounted for a large 
proportion of the variance in age at onset, but substantial 
variation was still observed between, and even within, 

http://crossmark.crossref.org/dialog/?doi=10.1016/S1474-4422(16)30193-4&domain=pdf
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families with the same mutation.7 Some studies of 
families with APP, PSEN1, or PSEN2 mutations8–10 have 
reported younger age at onset in APOE ε4 carriers, 
although this association was not evident in a 2014 meta-
analysis.7 Relatively little is known about the factors 
underlying variability in age at onset for diff erent 
mutations within a single gene, although PSEN1 
mutations beyond codon 200 have been associated with 
a later onset, more severe amyloid angiopathy, and a 
greater burden of white matter hyperintensities on MRI 
than mutations before codon 200.5,11,12

We aimed to analyse the clinical phenotype (initial 
cognitive symptoms and the frequency of additional 
neurological features) of a large cohort of individuals 
with ADAD; investigate potential associations with age at 
symptom onset, mutation position, and APOE ε 
genotype; and report the clinical and neuropathological 
features of the individuals with novel mutations.

Methods
Participants
Between July 1, 1987, and Oct 31, 2015, families with 
histories suggestive of ADAD were referred to the 
Dementia Research Centre (DRC) at University College 
London’s Institute of Neurology (London, UK) from 

clinical and research centres across the UK and Ireland. 
We used clinical and genetic data from these families 
(11 with APP mutations, 55 with PSEN1 mutations) in 
this study. Five families with APP duplications have also 
been identifi ed, but are not included in the analyses 
presented here because data have been reported 
elsewhere.13 We did not include individuals with sequence 
variants of questionable pathogenicity in this study.

Ethical approval for the study was provided by The 
National Hospital for Neurology and Neurosurgery and 
Institute of Neurology Joint Research Ethics Committee 
(subsequently the National Research Ethics Service 
Committee, London Queen Square). Written informed 
consent was obtained from all participants or from their 
guardian if cognitive impairment prohibited written 
informed consent.

Procedures
NSR evaluated contemporaneous records to determine 
age at symptom onset—defi ned as the age at which 
progressive symptoms of cognitive, behavioural, or motor 
changes were fi rst noticed by someone who knew the 
patient well—the initial cognitive or behavioural 
symptoms, and the presence of the following neurological 
features: myoclonus, seizures, pyramidal signs (such as 

Research in context

Evidence before this study
We searched PubMed for reports on the clinical phenotype of 
autosomal dominant familial Alzheimer’s disease (ADAD) up to 
April 23, 2016, using the following search terms: “familial 
Alzheimer’s disease”, “autosomal dominant Alzheimer disease”, 
“presenilin”, “PSEN1”, “PSEN2”, and “APP”, with no language 
restrictions. We identifi ed 200 publications reporting clinical 
information on individuals with ADAD, mostly from single 
pedigrees or small case series. We found 22 reviews of this 
literature, although the results of such reviews could potentially 
be subject to the publication bias caused by reporting atypical 
phenotypes more frequently than typical presentations. 
Therefore, while it is clear from the literature that atypical 
phenotypes occur in ADAD, less is known about the frequency 
of their occurrence, correlations between genotype and 
phenotype, and the pathophysiological mechanisms that might 
underlie them.

Added value of this study
We investigated the clinical phenotypes of ADAD in a large UK 
case series, including patient data collected since identifi cation 
of the fi rst mutation over 25 years ago. We ascertained the 
frequency of presenting cognitive symptoms and additional 
neurological features, and investigated their associations with 
age at symptom onset, APOE ε4 genotype, and mutation 
position. 44 diff erent mutations in the PSEN1 or APP genes 
were present in the cohort, including fi ve novel variants that 
are reported here for the fi rst time. We found clinically 

important phenotypic diff erences between patients with 
APP mutations and those with PSEN1 mutations. In addition to 
their younger age at symptom onset, PSEN1 mutation carriers 
more frequently presented with atypical cognitive symptoms 
and additional neurological features. Exploration of 
heterogeneity of clinical presentations between diff erent 
PSEN1 mutations suggested that mutation position might 
infl uence phenotype. Atypical cognitive presentations and 
spastic paraparesis were associated with PSEN1 mutations 
beyond codon 200, particularly involving exon 8. Conversely, 
particularly early ages at onset were observed for a cluster of 
mutations before codon 200 involving the fi rst hydrophilic 
loop of PSEN1.

Implications of all the available evidence
In describing the wide clinical spectrum of ADAD presentation, 
we highlight the importance for clinicians of considering 
genetic testing in young patients with dementia and additional 
neurological features, particularly when there is a family history 
of Alzheimer’s disease or when the family history is not 
available. Appreciation of atypical ADAD phenotypes is 
important from a diagnostic perspective and might also off er 
insights into the mechanisms by which diff erent mutations 
cause disease. In view of the phenotypic heterogeneity that 
exists within ADAD, particularly between APP and PSEN1 
mutation carriers, it could be informative to examine diff erent 
mutation types separately in observational studies and clinical 
trials of patients with ADAD.
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spastic paraparesis), extrapyramidal signs (such as 
rigidity), and cerebellar signs (such as ataxia). We classifi ed 
neurological features as early (≤5 years from symptom 
onset) or late (>5 years from onset). APOE ε4 status was 
determined by the Medical Research Council (MRC) Prion 
Unit (London, UK) using minor groove binding probe 
genotyping assays (TaqMan, Applied Biosystems).

Mutation analysis was carried out as described 
previously.14 The likely pathogenicity of novel variants was 
predicted using a previously published algorithm,15 and the 
tools PolyPhen (version 1.1.3) and PROVEAN (version 2). 
We assessed individuals with novel variants in PSEN1 or 
APP for the presence of additional mutations in other 
dementia-related genes using the MRC Dementia Gene 
Panel (appendix).16 Where possible, when a novel sequence 
variant was found in the proband, other aff ected family 
members were genotyped by sequencing the relevant exon 
to demonstrate cosegregation between the mutation and 
disease.

Two individuals with novel variants underwent post-
mortem brain donation to the Queen Square Brain Bank 
at the UCL Institute of Neurology. We assessed 
amyloid β-positive plaque pathology using the Consortium 

to Establish a Registry for Alzheimer’s Disease recom-
mendations17 and neurofi brillary tangle pathology with 
Braak staging.18

Statistical analysis
We investigated diff erences in age at symptom onset 
between the APP and PSEN1 mutation groups, and 
between APOE ε4 carriers and non-carriers within each 
genetic group, using two-sample t tests. We analysed 
associations between age at onset and PSEN1 mutation 
using a linear mixed eff ects model with random eff ects 
for mutation and family. The intraclass correlation 
coeffi  cient (ICC) was used to quantify the proportion of 
variance in age at onset explained by mutation, and by 
mutation and family. We analysed groups of individuals 
with APP and PSEN1 mutations separately to calculate 
the proportion of individuals presenting with amnestic 
symptoms or with atypical symptoms of behavioural 
change, language impairment, dyscalculia, or executive 
impairment; and the proportions with myoclonus, 
seizures, and pyramidal, extrapyramidal or cerebellar 
signs. We used two-sample t tests to investigate whether 
age at onset diff ered between individuals with typical 

Exon Number 
of 
families

Number of 
aff ected 
individuals in 
the family 
(range)

Mean age at 
onset, years 
(range)

APP

p.Ala692Gly 17 1 4 46 (39–54)

p.Val715Ala 17 1 1 42

p.Val717Gly 17 1 13 50 (40–59)

p.Val717Ile 17 6 22 (1–8) 52 (39–59)

p.Val717Leu 17 1 4 49 (48–51)

p.Thr719Asn 17 1 1 46

PSEN1

Intron 4 
(g.23024delG)

4 4 17 (1–12) 38 (35–45)

p.Tyr115Cys 5 2 2 39 (34–44)

p.Tyr115His 5 1 4 34 (30–36)

p.Thr116Asn 5 1 2 34 

p.Glu120Lys 5 2 7 (2–5) 35 (31–39)

p.Ser132Ala 5 1 3 59 (58–60)

p.Met139Val 5 4 18 (1–9) 40 (35–48)

p.Ile143Phe 5 1 2 56 (53–59)

p.Met146Ile 5 2 6 (2–4) 48 (43–50)

p.Leu153Val 5 1 3 35 (35–36)

p.Tyr154Cys 5 1 1 41

p.Leu166Arg 6 1 1 40

p.Leu166del 6 1 1 38

ΔI167 (p.Ile168del) 6 1 5 54 (43–60)

p.Leu171Pro 6 1 5 42 (40–43)

p.Glu184Asp 7 3 5 (1–2) 40 (37–45)

p.Ile202Phe 7 1 2 48 (47–48)

(Table 1 continues in next column)

See Online for appendix

Exon Number 
of 
families

Number of 
aff ected 
individuals in 
family (range)

Mean age at 
onset, years 
(range)

(Continued from previous column)

p.Gln222Pro 7 1 1 45

p.Gly206Val 7 1 1 30

p.Ile229Phe 7 1 3 33 (32–34)

p.Leu235Val 7 1 4 52 (44–59)

p.Phe237Leu 7 1 1 47

p.Leu250Ser 7 1 7 52 (47–56)

p.Ala260Val 8 1 1 40

p.Cys263Phe 8 1 2 59 (58–59)

p.Pro264Leu 8 2 3 (1–2) 50 (44–56)

p.Pro267Ser 8 1 2 38

p.Arg269His 8 3 4 (1–2) 55 (50–62)

p.Arg278Ile 8 1 7 51 (44–59)

p.Glu280Gly 8 3 16 (1–8) 42 (39–49)

p.Phe283Leu 8 1 15 46 (42–48)

p.Ser290Cys 9 1 5 42 (41–44)

ΔE9* 9 1 1 45

p.Arg377Met 11 1 1 38

p.Gly378Val 11 1 5 44 (41–48)

p.Gly394Val 11 1 1 40

p.Pro436Ser 12 1 3 46 (44–50)

p.Thr291Ala and 
p.Ala434Thr

9 and 
12†

1 1 42

Sex–specifi c information was not recorded during evaluation of patient medical 
histories. *The exon 9 deletion (NM_000021.3:c.869–1G→T; p.Ser290Cys; 
Thr291_Ser319del) is commonly referred to as ΔE9.  †One patient had both 
Thr291Ala on exon 9 and Ala434Thr on exon 12.

Table 1: Mutations carried by the patients in the cohort
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presentations and those with atypical presentations and 
between individuals with and without each additional 
neurological feature. Fisher’s exact tests were used to 
investigate associations between atypical cognitive 
presentations or additional neurological features and 
APOE ε4 status, PSEN1 exon, and PSEN1 mutation 
location (compared with codon 200). We used a p value of 
less than 0·05 as our measure of statistical signifi cance. 
We used Stata version 12 for all analyses.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
Age at symptom onset was available for 213 individuals 
(168 with PSEN1 mutations and 45 with APP mutations; 
table 1); APOE status could be established for 126 of these 
individuals (95 with PSEN1 mutations and 31 with 
APP mutations). Onset was signifi cantly later for 
individuals with APP mutations (mean age 
50·4 years [SD 5·2]; range 39–59) than for those with 
PSEN1 mutations (43·6 [7·2], range 30–62; p<0·0001). 
Possession of an APOE ε4 allele was not associated with 
age at onset for individuals with PSEN1 mutations 
(43·6 years [SD 7·2] for APOE ε4 positive vs 42·3 years [6·7] 
for APOE ε4 negative; p=0·385) or for those with 
APP mutations (50·7 years [4·2] for APOE ε4 positive vs 
50·7 years [5·3] for APOE ε4 negative; p=0·998).

In patients with a PSEN1 mutation, age at onset was 
found to be infl uenced by the specifi c mutation, with 
72% of the variance in age at onset explained by mutation 
(ICC 0·72). Mutation and family membership together 
explained 82% of the variance in age at onset (ICC 0·82). 
Individuals with mutations located before codon 200 
had, on average, a younger age at onset (41·3 years 
[SD 7·2]) than did those with mutations beyond 
codon 200 (45·8 years [6·4], p<0·0001), which appeared 
to be driven by a younger age at onset for mutations 
involving exon 4 and 5 (fi gures 1, 2). Age at onset for a 
patient with two PSEN1 substitutions (p.Thr291Ala and 
p.Ala434Thr) was excluded from our analyses because it 
was unclear whether pathogenicity was due to one or 
both of these aminoacid substitutions. The intron 4 
(NM_000021.3:c.338+1delG) mutation was classifi ed as 
involving exon 4 because it is located just outside this 
exon (appendix).20

Detailed contemporaneous records documenting 
medical history and neurological examination fi ndings 
were available for 121 of 213 individuals (85 with 
PSEN1 mutations and 36 with APP mutations), and 
APOE ε4 genotype could be established for 101 of these 
individuals (71 PSEN1 and 30 APP). 35 of the 36 individuals 
with APP mutations presented with typical amnestic 

symptoms; the other patient presented with dyscalculia 
but developed memory problems soon after (table 2). Of 
the 85 individuals with PSEN1 mutations, 71 (84%) 
presented with amnestic symptoms and 14 (16%) with 
atypical cognitive presentations, which were more 
frequently associated with PSEN1 than APP mutations 
(p=0·037). Of the 14 PSEN1 mutation carriers with 
atypical initial cognitive features, seven (8%) presented 
with behavioural change, three (4%) with language 
impairment, two (2%) with dyscalculia, and two (2%) 
with a dysexecutive syndrome (table 2). The PSEN1 
subgroup with atypical cognitive presentations had, on 
average, a somewhat older age at onset than those with 
typical amnestic symptoms (46·2 years [SD 5·9] vs 
42·0 years [7·4], p=0·046). Prevalence of atypical cognitive 
presentations diff ered markedly between exons, occurring 
in ten (45%) of 22 individuals with exon 8 mutations, and 
fewer than 20% of individuals with mutations involving 
other exons (appendix). As a result, atypical presentations 
were signifi cantly more common in individuals whose 
mutation was located after codon 200 (p=0·006). There 
was no association between atypical cognitive symptoms 
and APOE ε4 status (data not shown).

In the APP group, myoclonus and seizures were the 
only additional neurological features observed, and the 
frequency of myoclonus and seizures did not diff er 
signifi cantly between the PSEN1 and APP groups. In the 
APP group, 12 (33%) carriers had myoclonus and 
nine (25%) developed seizures. Of the 12 individuals 
with myoclonus, onset of myoclonus was early (≤5 years 
from onset) in fi ve (42%), late in two (17%), and uncertain 
in fi ve (42%). Of the nine individuals with seizures, 
onset was early in three (33%), late in three (33%), and 
uncertain in three (33%). In the PSEN1 group, 40 (47%) 

Figure 1: Age at onset for our cohort of PSEN1 mutation carriers
Each dot represents one individual’s age at onset. Within each exon, diff erent colours represent separate families; 
multiple families with the same mutation are indicated by diff erent shades of the same colour (blue, green, purple, 
or pink). Bars indicate mean age at onset for mutations involving each exon.
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of 85 carriers had myoclonus and 20 (24%) had seizures. 
Of the 40 individuals with myoclonus, onset of 
myoclonus was early in 28 (70%), late in nine (23%), and 
uncertain in three (7%). Of the 20 individuals with 
seizures, onset was early in six (30%), late in 10 (50%), 
and uncertain in four (20%). Individuals with myoclonus 
were signifi cantly more likely to develop seizures: 
16 (40%) developed seizures in the PSEN1 group 
(p=0·001) and six (50%) in the APP group (p=0·036). 
There was no association between myoclonus or seizures 
and age at onset or APOE ε4 status in either the APP or 
PSEN1 groups. There was no association between 
seizures or myoclonus and APOE ε4 status, exon or 
mutation location with respect to codon 200 in the 
PSEN1 group (appendix). 

Pyramidal, extrapyramidal and cerebellar signs were 
only seen in patients with PSEN1 mutations (table 2, 
appendix). Pyramidal signs were observed in 21 (25%) of 
the 85 PSEN1 carriers. All of these individuals had spastic 
paraparesis, and 18 also had upper limb pyramidal signs. 
Of the 21 patients with pyramidal signs, 15 (71%) developed 
them early, although none were reported to have these 
signs before onset of cognitive symptoms. The remaining 
six (29%) patients developed them late, with an absence of 
pyramidal signs at earlier assessments. There were no 
associations between pyramidal signs and age at onset in 
the PSEN1 cohort as a whole, and insuffi  cient numbers to 
investigate such associations at the level of individual 

families or mutations. Pyramidal signs were, however, 
observed more frequently in association with 
PSEN1 mutations after codon 200 than before codon 200 
(p=0·024), with particularly high frequency (50%) in 
patients with mutations on exon 8 (appendix).

Extrapyramidal signs were observed in 12 (14%) of the 
85 PSEN1 mutation carriers, occurring early in eight (67%), 
late in three (25%), and of uncertain onset in one (8%). No 
associations were found with age at onset, APOE ε4 status, or 
exon or PSEN1 mutation location (compared with codon 200). 
One of the patients with early extrapyramidal signs (PSEN1 
p.Tyr115His) had markedly asymmetrical features consistent 
with a corticobasal syndrome (appendix).

Cerebellar signs were observed in three (4%) of the 
85 PSEN1 mutation carriers, occurring early in two, and 
late in one. No associations were found with age at onset, 
APOE ε4 status, or exon or PSEN1 mutation location 
(compared with codon 200).

We identifi ed four novel mutations in PSEN1 and one 
novel mutation in APP. The novel variants in APP 
(p.Thr719Asn [NM_000484·3:c.2156C→A]) and PSEN1 
(p.Gln222Pro [NM_000021.3:c.665A→C], p.Phe283Leu 
[NM_000021.3:c.849T→G]) were identifi ed in three 
patients with typical amnestic presentations. Two PSEN1 
substitutions (p.Ala434Thr [NM_000021.3:c.1301G→A] 
and the novel p.Thr291Ala [NM_000021.3:c.871A→G] 
variant) were identifi ed in a patient who presented with 
memory symptoms, parkinsonism, and pyramidal signs 

Figure 2: Location of the mutations present in our cohort of PSEN1 mutation carriers, shown according to age-at-onset quartiles
Predicted membrane topology of PSEN1, with the nine transmembrane domains (dark green shaded boxes) and boundaries between coding exons indicated. 
The sites of aminoacid substitution (or insertion in the case of intron 4, and deletion in the case of ΔE9) are indicated by coloured circles, with the colour representing 
the quartile that the mean age at onset for that mutation falls within. Adapted by permission from Macmillan Publishers: Nature (2012).19 Codon 200 is shown within 
the fourth transmembranal domain of the protein. TM=transmembrane domain.
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and who had Alzheimer’s disease pathology with cotton 
wool plaques, diff use deposits, and severe amyloid 
angiopathy post mortem (fi gure 3, appendix). The fi fth 

Patients with the phenotype (n/N)

Behavioural presentation

PSEN1

p.Met139Val 1/14

p.Leu166Arg 1/1

p.Pro264Leu 2/3

p.Arg269His 1/2

p.Arg278Ile 1/5

p.Glu280Gly 1/9

Language presentation

PSEN1

p.Pro264Leu 1/321

p.Arg278Ile 2/522

Dycalculia presentation

PSEN1

Intron 4 (g.23024delG) 1/9

p.Leu235Val 1/2

APP

p.Val717Ile 1/19

Dysexecutive presentation

PSEN1

p.Glu280Gly 2/9

Myoclonus

PSEN1

Intron 4 (g.23024delG) 6/9

p.Tyr115Cys 1/1

p.Tyr115His 1/2

p.Ser132Ala 1/1

p.Met139Val 10/1423,24

p.Met146Ile 2/3

p.Glu184Asp 1/3

p.Ile202Phe 1/125

p.Gly206Val 1/1

p.Ile229Phe 1/1

p.Phe237Leu 1/1

p.Leu250Ser 1/1

p.Ala260Val 1/1

p.Pro264Leu 1/3

p.Arg269His 1/2

p.Arg278Ile 3/5

p.Glu280Gly 4/9

p.Ser290Cys 1/2

p.Gly278Val 1/1

p.Gly394Val 1/1

APP

p.Val717Gly 5/1126

p.Val717Ile 5/19

p.Val717Leu 1/4

p.Thr719Asn 1/1

(Table 2 continues in next column)

Patients with the phenotype (n/N)

(Continued from previous column)

Seizures

PSEN1

Intron 4 (g.23024delG) 5/9

p.Tyr115Cys 1/1

p.Tyr115His 1/4

p.Met139Val 4/1423,24

p.Met146Ile 2/3

p.Gly206Val 1/1

p.Ala260Val 1/1

p.Pro264Leu 2/3

p.Pro267Ser 1/1

p.Glu280Gly 2/9

APP

p.Ala692Gly 1/1

p.Val717Gly 5/1126

p.Val717Ile 2/19

p.Val7171Leu 1/4

Spastic paraparesis with or without other pyramidal signs

PSEN1

Intron 4 (g.23024delG) 1/9

p.Tyr115His 1/2

p.Glu120Lys 1/3

p.Met139Val 1/14

p.Met146Ile 1/3

p.Leu166Arg 1/1

p.Glu184Asp 1/3

p.Pro264Leu 1/3

p.Arg278Ile 2/5

p.Glu280Gly 8/927

p.Gly394Val 1/1

p.Thr291Ala and p.Ala434Thr 1/1

ΔE9 1/1

Extrapyramidal signs

PSEN1

p.Tyr115His 1/3

p.Glu120Lys 1/3

p.Ser132Ala 1/1

p.Met146Ile 1/3

p.Leu166Arg 1/1

Δ167 (p.Ile168del) 1/2

p.Arg278Ile 3/5

p.Glu280Gly 2/9

p.Thr291Ala and p.Ala434Thr 1/1

Cerebellar signs

PSEN1

p.Tyr115Cys 1/1

p.Glu280Gly 1/927

p.Ser290Cys 1/2

References have been provided where clinical phenotype data from some 
individuals have been reported in previous publications.

Table 2: Prevalence of phenotypes and neurological features in 
individuals with APP or PSEN1 mutations
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individual with a novel variant (PSEN1 p.Ser132Ala 
[NM_000021.3:c.394T→G]) presented with a dementia 
with Lewy bodies phenotype and had Alzheimer’s 
disease pathology with severe neocortical Lewy body 
disease identifi ed post mortem. (fi gure 4). This patient 
also had an intronic variant (NM_005910·5: rs11872014) 
in the MAPT gene. Although there is no consensus on 
the impact of the variant on MAPT splicing, given that 
this MAPT variant has been found in an elderly healthy 
control (unpublished data, MRC Prion Unit) and 
described 321 times in the Exome Aggregate 
Consortium (ExAC) dataset with an allele frequency of 
0·002952 (0·004401 in Europeans), it is unlikely to have 
caused disease in this patient. No additional variants in 
dementia-related genes were found in the other 
individuals with novel PSEN1 or APP variants using the 
MRC Dementia Gene Panel.16 All novel sequence 
variants identifi ed were absent from 100 healthy, white 
control participants who were unrelated to these 
patients. With the exception of p.Ser132Ala, which was 
seen in one individual of European ancestry, none of 
the variants were found in the ExAC dataset. We discuss 
the likely pathogenicity of the novel variants and 
provide further clinical and neuropathological details 
in the appendix.

Discussion
Clinically signifi cant diff erences are present between 
PSEN1 and APP mutation carriers with ADAD, 
emphasising the potential importance of examining 
these groups separately in observational research and 
clinical trials. In addition to the younger age at 
symptom onset for individuals with PSEN1 mutations 
than in those with APP mutations, PSEN1 mutation 
carriers more frequently presented with atypical 
cognitive symptoms and additional neurological 
features. Behavioural, language, and dysexecutive 
presentations, spastic paraparesis, and other pyramidal, 
extrapyramidal, and cerebellar signs were only seen in 
the individuals with PSEN1 mutations. By contrast, 
myoclonus and seizures aff ected a similar proportion 
of patients with APP and PSEN1 mutations. In both 
genetic groups, individuals with myoclonus were more 
likely to develop seizures than were those without 
myoclonus. These fi ndings highlight the need for 
clinicians to be vigilant of symptoms of seizure activity 
when myoclonus is present.

Limitations of our study are that some atypical 
phenotypes, such as movement disorder presentations or 
much older onset, might not have been seen in our case 
series due to our centre being more likely to get referrals 
for younger patients with cognitive symptoms. Also, not 
all patients were followed to advanced stages of illness, so 
late neurological features might be more frequent than 
we describe here. With enrolment of individuals over a 
long period of time, there is the potential for families to 
have greater awareness and therefore earlier recognition 

of symptom onset with successive generations. The 
relative non-diversity of individuals seen in a single 
country might also limit generalisability of the fi ndings. 
However, the mean age at onset in our cohort was very 
similar to that in a French case series28 and in recent 
systematic reviews of ADAD.5,7,28 As in our case series, 
spastic paraparesis and extrapyramidal and cerebellar 
signs were seen in French PSEN1 mutation carriers, but 
not APP mutation carriers, usually manifesting within 
5 years of symptom onset. The proportion of French 
patients with PSEN1 mutations presenting with frontal 
symptoms (11%) was also similar to the combined 
proportion of individuals in our series whose initial 
cognitive symptoms were behavioural (8%) or 
dysexecutive (2%).28 Finally, a non-amnestic presentation 
has been reported in 16% of individuals with ADAD 
worldwide;5 which is the same proportion as in 
individuals with PSEN1 mutation carriers in our cohort.

While some of the PSEN1 mutation carriers in our 
study presented with non-amnestic cognitive symptoms, 
all but one of the APP mutation carriers had initial 
memory symptoms. These phenotypic diff erences have 
some support from neuroimaging studies: we have 
previously reported that APP mutation carriers have 
greater hippocampal atrophy than PSEN1 mutation 

Figure 3: Neuropathological fi ndings in a 42-year-old man with a PSEN1 
double substitution (p.Thr291Ala and p.Ala434Thr), presenting with 
cognitive impairment and pyramidal and extrapyramidal signs
Amyloid pathology in the hippocampus of cotton wool plaques (A) and capillary 
cerebral amyloid angiopathy (B). Diff use deposits shown in the granule cell layer 
of the cerebellum (C). Amyloid β deposits in the leptomeningeal blood 
vessels (D). Amyloid β deposits are shown to be in an amyloid conformational 
state using Congo red staining (E). AT8 immunoreactivity for abnormally 
phosphorylated tau in the CA1 subregion of the hippocampus (F), and at 
40X magnifi cation (G) detailing the neurofi brillary tangles and neuropil threads.
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For the Exome Aggregate 
Consortium (ExAC) dataset see 

http://exac.broadinstitute.org
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carriers of similar disease severity, whereas 
PSEN1 mutation carriers show more extensive neo-
cortical atrophy and white matter involvement; the latter 
could underlie some of the atypical features observed in 
the PSEN1 group.29 PSEN1 forms the catalytic subunit of 
gamma-secretase, which processes APP, but also a large 
number of other substrates involved in various 
physiological functions, including myelin repair and 
vascular and immune function. Gamma-secretase carries 
out an initial endopeptidase cleavage of its substrates, 
followed by successive carboxypeptidase-like cleavages. 
PSEN1 mutations all appear to decrease the effi  ciency of 
this carboxypeptidase-like activity, resulting in the release 
of longer amyloid β peptides, which are more prone to 
aggregation. Most PSEN1 mutations also aff ect the 
endopeptidase activity, but to various degrees, potentially 
aff ecting the processing of other substrates in addition to 
APP.30,31 We speculate that altered processing of other 
substrates could contribute to the atypical phenotypes 
witnessed in association with some PSEN1 mutations. 
Supporting this notion, atypical cognitive presentations 
and pyramidal signs in participants of this study 
were seen more frequently in association with 
PSEN1 mutations involving exon 8. The residues encoded 
by exon 8 lie within the hydrophilic sequence between 

transmembrane domains six and seven of PSEN1, which 
is where the cleavage site processed by autocatalytic 
activity resides.32 Furthermore, patients with two atypical 
phenotypes—corticobasal syndrome (p.Tyr115His) or 
dementia with Lewy bodies (p.Ser132Ala) presentations—
had mutations involving hydrophilic loop 1, which has 
been proposed to form the initial substrate binding site 
in PSEN1, with Ser132 playing a crucial role.33 Indeed, 
the p.Tyr115His mutation has been found to reduce 
endopeptidase effi  ciency due to substantially decreased 
affi  nity for the Notch substrate, while the affi  nity for APP 
is aff ected to a lesser extent.30 Certain mutations might 
therefore diff erentially aff ect the substrate specifi city of 
the gamma-secretase complex and investigating whether 
this mechanism contributes to atypical clinical pheno-
types is an important direction for future work. It was 
notable that the patient with the PSEN1 p.Ser132Ala 
mutation, who presented with a dementia with Lewy 
bodies phenotype, had severe neocortical Lewy body 
pathology. However, concomitant Lewy body pathology is 
a frequent fi nding in ADAD.34 Large cohort studies will 
be important to further investigate clinical phenotype 
and clinicopathologic correlations in ADAD, ideally with 
unaff ected family members acting as controls.

Our results suggest that multiple factors could 
contribute to phenotypic heterogeneity in ADAD. There 
was sometimes considerable variability in the clinical 
features of individuals with the same mutation, even 
within a single family. Even so, we found that mutations 
before codon 200 were associated with younger age at 
onset, whereas mutations beyond codon 200 were more 
frequently associated with later ages at onset, atypical 
cognitive presentations, and pyramidal signs. Given the 
relatively small numbers of patients manifesting each 
atypical feature, and the numbers of associations 
(although not independent), it is important to be 
cautious about nominally signifi cant associations. 
Nonetheless, we felt it important to report them to 
allow replication in other cohorts. Indeed, a 2015 
systematic review5 also reported that PSEN1 mutations 
before codon 200 had younger ages at onset and were 
more frequently associated with seizures and 
myoclonus, whereas mutations beyond codon 200 were 
more frequently associated with spastic paraparesis. 
Codon 200 is an arbitrary cut-off , and mapping the 
mean ages at onset for diff erent mutations to the 
structure of PSEN1 (fi gure 2) suggests that there might 
be certain areas of the protein where mutations cause 
particularly early-onset disease, such as the fi rst 
hydrophilic loop encoded by exons four and fi ve. This 
extracellular loop contributes to a key allosteric core 
that changes amyloid β profi les through carboxy-
peptidase-like activity without aff ecting the endo-
peptidase function of gamma-secretase.35,36 As 
qualitative changes in amyloid β profi les appear to 
underlie the pathogenicity of PSEN1 mutations,30,31 one 
could speculate that these might be more dramatically 

Figure 4: Neuropathological fi ndings in a 70-year-old man with the novel 
PSEN1 p.Ser132Ala mutation presenting with a dementia with Lewy bodies 
phenotype
Amyloid pathology in the hippocampus of cored amyloid plaques (A; double 
arrows), and diff use amyloid β (B; arrows). AT8 immunoreactivity for 
abnormally phosphorylated tau of neurofi brillary tangles in the CA1 subregion of 
the hippocampus (C), and of neuritic plaques in the temporal cortex (D; arrows). 
α-synuclein immunohistochemistry of Lewy neurites and Lewy bodies in the 
CA1 sub-region of the hippocampus (E), and Lewy bodies found in the 
dopaminergic neurons of the substantia nigra (F; arrows).
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altered by mutations involving this allosteric core, 
resulting in a more aggressive phenotype.

We have demonstrated that a subset of patients with 
ADAD do not have typical amnestic presentations. 
Because atypical presentations also occur in sporadic 
Alzheimer’s disease, we do not think that our fi ndings 
challenge the idea that familial cases represent a 
paradigm for Alzheimer’s disease, but rather highlight 
the importance of distinguishing and investigating 
atypical phenotypes to understand the complex 
underlying mechanisms that might contribute to 
disease. The clinical features of PSEN1-associated ADAD 
could erroneously suggest a diagnosis of frontotemporal 
or vascular dementia, corticobasal degeneration, or 
dementia with Lewy bodies. We suggest that it is 
important to consider ADAD in the diff erential 
diagnosis of patients with early-onset dementia with 
additional neurological features. ADAD detection rates 
have, at least historically, been lower than expected 
based on genetic epidemiology data, and have shown 
considerable variability across diff erent regions of the 
UK.37 Failure to identify a mutation in these families 
might deprive the aff ected patient of a correct diagnosis 
and appropriate symptomatic treatment, and also has 
implications for the individual’s family. Individuals at 
risk of ADAD should, if they wish, be given access to 
genetic counselling so that they can discuss their 
choices in a variety of areas, including predictive genetic 
testing and reproductive options such as preimplantation 
genetic diagnosis. They might benefi t from the peer 
support of connecting with other families aff ected by 
ADAD,38 and from opportunities to participate in 
research, including preclinical treatment trials aiming 
to delay or prevent the onset of symptoms.
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