122 research outputs found
Recommended from our members
Spuler, Bertold
Spuler, Bertold (b. Karlsruhe, Germany, 5 December 1911; d. Hamburg, 6 March 1990), scholar of East European history and Oriental studies. Among his many publications are important works on the history of the Iranian lands from the 7th century CE onwards
Cranial ontogeny of the sole, dagetichthys marginatus (soleidae), with considerations on the feeding ability of larvae and early juveniles
The overall aim of this study was to gain a better understanding of the feeding mechanisms of the larvae and early juveniles of the sole, Dagetichthys marginatus (Soleidae), with which to assess the suitability of current feeding protocols and to facilitate the development of an appropriate pelleted feed. This was achieved by examining the ontogeny of the cranium of laboratory reared sole, with particular emphasis on those elements associated with feeding and by comparing the cranium of juvenile fish with that of adult fish. At 4 dah (days after hatch) Dagetichthys marginatus larvae develop the first rudimentary branchial arches that facilitates the capture and ingestion of food items. Subsequent development of cranial structures, such as the oral jaws, suspensorium, neurocranium, hyoid and branchial arches and the opercular apparatus enables the larvae, at 16 dah, to switch from ram feeding to suction feeding on live prey. The use of live Artemia nauplii from 4 to 16 dah is therefore appropriate. The first morphological asymmetries developed at 16 dah in the dentaries and at 22 dah the maxillae and the premaxillae began to show asymmetries. Teeth were present only on the blind side of the oral jaw elements and during this period (16 to 22 dah) the existing elements began to ossify. From 16 to 35 dah the standard feeding protocol consists of a combination of pelagic (Artemia metanauplii) and benthic prey (dead, frozen Artemia nauplii) and from 25 dah onwards a sinking pellet is provided. The time (dah) at which frozen Artemia and sinking pellets were provided, appropriately corresponded to the initiation of benthic feeding behaviour. However at this stage the use of pelagic Artemia metanauplii is inappropriate and unnecessary. At 31 dah the cranial morphology resembled that of adult fish. Adult D. marginatus display extreme asymmetries among the elements of the oral jaws, the suspensorium and certain elements of the neurocranium. Elements on the blind side are larger and more robust than those on the ocular side and are adapted for feeding, while those on the ocular side appear to have a respiratory function. From 31 dah the cranial elements are identical to those of adult fish, suggesting that no further feeding behavioural changes occurred and that a sinking pellet, of which the nutrient composition meets the requirements of the fish, would be appropriate for ongrowing
The influence of prey density and fish size on prey consumption in common sole (Solea solea L.)
We examined the influence of prey density and fish size on prey consumption in common sole (Solea solea L.) foraging on buried ragworm Alitta virens (Sars) (formerly known as Nereis virens (Sars)). The tested prey densities of 0.8, 2.2, 4.3 and 6.5 individuals dmâ2 were exposed to common soles of either 100âg or 300âg. At each prey density common sole foraged for 48âh. At both common sole classes studied, a positive correlation between prey consumption and prey density was observed (Pâ<â0.001). Relationships however differed between 100 and 300âg common sole. In 300âg common sole the relationship between prey consumption and prey density was linear (Pâ<â0.001), whereas in 100âg common sole the relationship between prey density and prey eaten was polynomial (Pâ=â0.018). Small common sole reached satiety prey consumption rates at nearly every prey density while large common sole did not reach satiation rates even at highest prey densities. The data suggest that in nature, polychaetes such as A. virens may contribute to the diet of small common sole even when they are only moderately abundant. In contrast, polychaetes may not be an ideal prey for larger common sole as indicated by the absence of satiety regardless of prey density
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
- âŠ