158 research outputs found

    Adoptive Immunotherapy with Cytokine-Induced Killer Cells for Patients with Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation

    Get PDF
    Donor leukocyte infusions induce remissions in some patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (HCT); however, graft-versus-host disease (GVHD) remains the major complication of this strategy. Cytokine-induced killer (CIK) cells are a unique population of cytotoxic T lymphocytes that express the CD3+CD56+ phenotype and show marked up-regulation of the natural killer cell receptor NKG2D (CD314). CIK cells are non–major histocompatibility complex–restricted and NKG2D-dependent in target recognition and cytotoxicity. We explored the feasibility of ex vivo expansion of allogeneic CIK cells in patients with relapsed hematologic malignancies after allogeneic HCT. Eighteen patients (median age, 53 years; range, 20-69 years) received CIK cell infusions at escalating doses of 1 × 107 CD3+ cells/kg (n = 4), 5 × 107 CD3+ cells/kg (n = 6), and 1 × 108 CD3+ cells/kg (n = 8). The median expansion of CD3+ cells was 12-fold (range, 4- to 91-fold). CD3+CD56+ cells represented a median of 11% (range, 4%-44%) of the harvested cells, with a median 31-fold (range, 7- to 515-fold) expansion. Median CD3+CD314+ cell expression was 53% (range, 32%-78%) of harvested cells. Significant cytotoxicity was demonstrated in vitro against a panel of human tumor cell lines. Acute GVHD grade I-II was seen in 2 patients, and 1 patient had limited chronic GVHD. After a median follow-up of 20 months (range, 1-69 months) from CIK infusion, the median overall survival was 28 months, and the median event-free survival was 4 months. All deaths were due to relapsed disease; however, 5 patients had longer remissions after infusion of CIK cells than from allogeneic HCT to relapse. Our findings indicate that this form of adoptive immunotherapy is well tolerated and induces a low incidence of GVHD, supporting further investigation as an upfront modality to enhance graft-versus-tumor responses in high-risk patient populations

    Association Between c-Myc and Colorectal Cancer Prognosis: A Meta-Analysis

    Get PDF
    Background: There is debate as to whether c-Myc predicts prognosis in colorectal cancer (CRC). In this study, we aimed to review the association between c-Myc and CRC prognosis.Methods: Pertinent studies were identified by searching electronic databases and carefully reviewing the reference lists of pertinent studies until March 2016. The summary hazard ratio (HR) and corresponding 95% confidence interval (CI) were calculated to study the association between c-Myc and CRC prognosis.Results: Eight cohort studies (including seven studies about overall survival [OS] and one study about disease free survival [DFS]) were included. The pooled HR of OS was 1.13 (95% CI: 0.66–1.95). In subgroup analysis, no significant association between c-Myc and CRC prognosis was found in the studies either from Western countries (HR: 0.87, 95% CI: 0.68–1.10) or Asian countries (HR: 1.89, 95% CI: 0.62–5.77). HRs were 0.86 (95% CI: 0.38–1.94) and 1.57 (95% CI: 0.73–3.39) for the studies using univariate analysis and multivariate analysis, respectively. HR from the studies that examined DNA level was significantly different (HR: 2.05, 95% CI: 1.22–3.46); while that about RNA level or protein level was not significantly different.Conclusion: c-Myc was not associated with CRC prognosis in this meta-analysis. However, the conclusion is preliminary and should be examined in future studies

    CFD as a tool for modelling membrane systems

    Get PDF
    Computational fluid dynamics (CFD) is a computer-based numerical method used to analyse systems that involve fluid flow and/or heat and mass transfer (Versteeg & Malalasekera, 2007). CFD bridges the two different approaches for solving engineering problems before the computer era, theoretical and experimental; it relies on mathematical models while being easy to adapt to almost any realistic condition (Anderson & Wendt, 1995). Another feature of CFD is its versatility, as it allows the analysis of systems for a variety of applications such as chemical reactions (Salehi et al., 2016), aerodynamics (Snel, 2003), dispersion of pollutants (Chu et al., 2005), blood flows (Byun & Rhee, 2004), among many others

    N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability

    Get PDF
    [[abstract]]R-spondin 1 (Rspo1) plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1) domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER) quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.[[notice]]補正完

    Design of Diarylheptanoid Derivatives as Dual Inhibitors Against Class IIa Histone Deacetylase and β-amyloid Aggregation

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with multiple etiologies. Beta-amyloid (Aβ) self-aggregation and overexpression of class IIa histone deacetylases (HDACs) are strongly implicated with AD pathogenesis. In this study, a series of novel diarylheptanoid derivatives were designed, synthesized and evaluated for use as dual Aβ self-aggregation and class IIa HDAC inhibitors. Among these compounds, 4j, 5c, and 5e displayed effective inhibitions for Aβ self-aggregation, HDAC5 activity and HDAC7 activity with IC50 values of <10 μM. The compounds contain three common features: (1) a catechol or pyrogallol moiety, (2) a carbonyl linker and (3) an aromatic ring that can function as an HDAC cap and create hydrophobic interactions with Aβ1-42. Furthermore, compounds 4j, 5c, and 5e showed no significant cytotoxicity to human neuroblastoma SH-SY5Y cells and also exhibited neuroprotective effect against H2O2-induced toxicity. Overall, these promising in vitro data highlighted compounds 4j, 5c, and 5e as lead compounds that are worthy for further investigation

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore