81 research outputs found

    Limiting resource and leaf functional traits jointly determine distribution patterns of leaf intrinsic water use efficiency along aridity gradients

    Get PDF
    Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales

    Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation

    Full text link

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003-2012.

    Get PDF
    The interannual variation of the Bowen ratio, through its effect on the warming extent of available energy to the ecosystem land surface air, heavily influences the ecosystem microclimate and affects the hydrological cycle at both regional and global scales. Although the precipitation amount in southeast China is not expected to change greatly as a result of climate change, the precipitation frequency may be altered in the future. We explored the interannual variation of the Bowen ratio and its affecting mechanisms based on eddy covariance measurements in a subtropical plantation in southeast China during 2003-2012. The results indicated that the annual mean Bowen ratio was 0.35 ± 0.06, with a range of 0.29-0.45. The Bowen ratio during the dry season (July-October) positively correlated with the annual Bowen ratio (R(2) = 0.85, p<0.001). The effective precipitation frequency during the dry season, through its positive effect on shallow soil water content, indirectly and negatively affected the annual Bowen ratio. Between 2003 and 2012, the annual Bowen ratio exhibited a marginally significant decreasing trend (p = 0.061), meanwhile the effective precipitation frequency and shallow soil water content during the dry season increased significantly (p<0.001). The annual Bowen ratio may decrease further if the effective precipitation frequency and shallow soil water content during the dry season follow similar trends in the future. The warming effect of available energy to the surface air of our studied plantation may decline with the decreasing annual Bowen ratio

    Seasonal, Diurnal and Wind-Direction-Dependent Variations of the Aerodynamic Roughness Length in Two Typical Forest Ecosystems of China

    No full text
    Aerodynamic roughness length (zom) is an important parameter for reliably simulating surface fluxes. The parameter varies with wind speed, atmospheric stratification, terrain and other factors; however, variations of this parameter are not properly considered in most models, which may result in uncertainties in simulating surface latent heat and sensible heat flux. There have been few studies of the diurnal and wind-direction dependent variations in zom. This study analyzes the seasonal, diurnal and wind-direction-dependent variations in zom calculated from the profile of meteorological data for two forest systems of China, and explores the mechanism underlying these variations
    corecore