82 research outputs found

    A Novel Hybrid SVM-CNN Method for Extracting Characteristics and Classifying Cattle Branding

    Get PDF
    A tool that can perform the automatic identification of cattle brandings is essential for the government agencies responsible for the record, control and inspection of this activity. This article presents a novel hybrid method that uses Convolutional Neural Networks (CNN) to extract features from images and Support Vector Machines (SVM) to classify the brandings. The experiments were performed using a cattle branding image set provided by the City Hall of Bagé, Brazil. Metrics of Overall Accuracy, Recall, Precision, Kappa Coefficient, and Processing Time were used in order to assess the proposed tool. The results obtained here were satisfactory, reaching a Overall Accuracy of 93.11% in the first experiment with 39 brandings and 1,950 sample images, and 95.34% of accuracy in the second experiment, with the same 39 brandings, but with 2,730 sample images. The processing time attained in the experiments was 31.661s and 41.749s, respectively

    VIDEOCOLONOSCOPIA: OS CUIDADOS NA VISÃO DA EQUIPE DE ENFERMAGEM

    Get PDF
    O estudo tem como objetivo verificar qual a percepção da equipe de enfermagem em relação à assistência prestada aos pacientes submentidos ao exame de videocolonoscopia. Pesquisa qualitativa, descritiva e exploratória realizada com seis profissionais da enfermagem em uma Clínica do Aparelho Digestivo, privada, localizada na região metropolitana de Porto Alegre/RS. A coleta de dados foi realizada nos meses de setembro e outubro/2016 por meio de entrevista semiestruturada. Após análise das entrevistas emergiram três categorias: A percepção da equipe de enfermagem na humanização do paciente submetido à videocolonoscopia; Os cuidados prestados pela enfermagem no pré e pós realização da videocolonoscopia e Ações para melhorar o atendimento e cuidados de enfermagem ao paciente submetido a videocolonoscopia. Assim, os resultados mostraram a preocupação da equipe de enfermagem com os pacientes submetidos à videocolonoscopia no pré, trans e pós exame. Além dos cuidados prestados de forma humanizada e com orientações coerentes aos pacientes e familiares

    Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm

    Get PDF
    Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye-related diseases such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, the circular Hough transform and the grow-cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the circular Hough transform, and the grow-cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves an optic disc detection success rate of 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc

    Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage

    Full text link
    Regular screening for the development of diabetic retinopathy is imperative for an early diagnosis and a timely treatment, thus preventing further progression of the disease. The conventional screening techniques based on manual observation by qualified physicians can be very time consuming and prone to error. In this paper, a novel automated screening model based on deep learning for the semantic segmentation of exudates in color fundus images is proposed with the implementation of an end-to-end convolutional neural network built upon UNet architecture. This encoder-decoder network is characterized by the combination of a contracting path and a symmetrical expansive path to obtain precise localization with the use of context information. The proposed method was validated on E-OPHTHA and DIARETDB1 public databases achieving promising results compared to current state-of-theart methods.This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of Adri´an Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Silva, C.; Colomer, A.; Naranjo Ornedo, V. (2018). Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 164-173. https://doi.org/10.1007/978-3-030-03493-1_18S164173World Health Organization: Diabetes fact sheet. Sci. Total Environ. 20, 1–88 (2011)Verma, L., Prakash, G., Tewari, H.K.: Diabetic retinopathy: time for action. No complacency please! Bull. World Health Organ. 80(5), 419–419 (2002)Sopharak, A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Programs Biomed. 133, 195–205 (2016)Haloi, M., Dandapat, S., Sinha, R.: A Gaussian scale space approach for exudates detection, classification and severity prediction. arXiv preprint arXiv:1505.00737 (2015)Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)Harangi, B., Hajdu, A.: Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 54, 156–171 (2014)Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering. Sensors 9(3), 2148–2161 (2009)Havaei, M., Davy, A., Warde-Farley, D.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35(11), 2369–2380 (2016)Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)Gulshan, V., Peng, L., Coram, M.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation, pp. 1–23. arXiv preprint arXiv:1704.06857 (2017)Deng, Z., Fan, H., Xie, F., Cui, Y., Liu, J.: Segmentation of dermoscopy images based on fully convolutional neural network. In: IEEE International Conference on Image Processing (ICIP 2017), pp. 1732–1736. IEEE (2017)Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2014)Li, W., Qian, X., Ji, J.: Noise-tolerant deep learning for histopathological image segmentation, vol. 510 (2017)Chen, H., Qi, X., Yu, L.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)Morales, S., Naranjo, V., Angulo, U., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)Zhang, X., Thibault, G., Decencière, E.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014

    Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

    Full text link
    Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of Adri´an Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Pereira, J.; Colomer, A.; Naranjo Ornedo, V. (2018). Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 174-183. https://doi.org/10.1007/978-3-030-03493-1_19S174183Sidibé, D., Sadek, I., Mériaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)Walter, T., Klein, J.C., et al.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)Ali, S., et al.: Statistical atlas based exudate segmentation. Comput. Med. Imaging Graph. 37(5–6), 358–368 (2013)Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., et al.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int. J. Image Graph. Signal Process. 4(4), 19 (2012)Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput. Methods Programs Biomed. 114(2), 141–152 (2014)Machairas, V.: Waterpixels and their application to image segmentation learning. Ph.D. thesis, Université de recherche Paris Sciences et Lettres (2016)Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_16Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)DErrico, J.: inpaint\_nans, matlab central file exchange (2004). http://kr.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans . Accessed 13 Aug 201

    Métodos computacionais para identificar automaticamente estruturas da retina e quantificar a severidade do edema macular diabético em imagens de fundo de olho

    Get PDF
    Através das imagens de fundo do olho, os especialistas em oftalmologia podem detectar possíveis complicações relacionadas ao Diabetes como a diminuição ou até a perda da capacidade de visão. O Edema Macular Diabético (EMD) é uma das complicações que lideram os casos de danos à visão em pessoas em idade de trabalho. Sendo assim, esta tese apresenta métodos para automaticamente identificar os diferentes níveis de gravidade do Edema Macular Diabético visando auxiliar o especialista no diagnóstico dessa patologia. Como resultado final, propõe-se automaticamente e rapidamente identificar, a partir da imagem, se o paciente possui o EMD leve, moderado ou grave. Utilizando imagens de fundo do olho de um banco de dados livremente disponível na internet (ou seja, o DIARETDB1), o método proposto para a identificação automática do EMD obteve uma precisão de 94,29%. Alguns métodos intermediários necessários para a solução desse problema foram propostos e os resultados publicados na literatura científica.Through color eye fundus images, the eye care specialists can detect possible complications related to diabetes as the vision impairment or vision loss. The Diabetic Macular Edema (DME) is the most common cause of vision damage in working-age people. Therefore, this thesis presents an approach to automatically identify the different levels of severity of diabetic macular edema aiming to assist the expert in the diagnosis of this pathology. As a final result, a methodology to automatically and quickly identify, from the eye fundus image, if a patient has the EMD mild, moderate or severe EMD is proposed. In a preliminary evaluation of our DME grading scheme using publicly available eye fundus images (i.e., DIARETDB1 image database), an accuracy of 94.29% was obtained. Some intermediate methods needed to solve this problem have been proposed and the results published in scientific literature

    Métodos computacionais para identificar automaticamente estruturas da retina e quantificar a severidade do edema macular diabético em imagens de fundo de olho

    Get PDF
    Através das imagens de fundo do olho, os especialistas em oftalmologia podem detectar possíveis complicações relacionadas ao Diabetes como a diminuição ou até a perda da capacidade de visão. O Edema Macular Diabético (EMD) é uma das complicações que lideram os casos de danos à visão em pessoas em idade de trabalho. Sendo assim, esta tese apresenta métodos para automaticamente identificar os diferentes níveis de gravidade do Edema Macular Diabético visando auxiliar o especialista no diagnóstico dessa patologia. Como resultado final, propõe-se automaticamente e rapidamente identificar, a partir da imagem, se o paciente possui o EMD leve, moderado ou grave. Utilizando imagens de fundo do olho de um banco de dados livremente disponível na internet (ou seja, o DIARETDB1), o método proposto para a identificação automática do EMD obteve uma precisão de 94,29%. Alguns métodos intermediários necessários para a solução desse problema foram propostos e os resultados publicados na literatura científica.Through color eye fundus images, the eye care specialists can detect possible complications related to diabetes as the vision impairment or vision loss. The Diabetic Macular Edema (DME) is the most common cause of vision damage in working-age people. Therefore, this thesis presents an approach to automatically identify the different levels of severity of diabetic macular edema aiming to assist the expert in the diagnosis of this pathology. As a final result, a methodology to automatically and quickly identify, from the eye fundus image, if a patient has the EMD mild, moderate or severe EMD is proposed. In a preliminary evaluation of our DME grading scheme using publicly available eye fundus images (i.e., DIARETDB1 image database), an accuracy of 94.29% was obtained. Some intermediate methods needed to solve this problem have been proposed and the results published in scientific literature
    corecore