383 research outputs found

    An upper limit to the secular variation of the gravitational constant from white dwarf stars

    Get PDF
    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound G'/G ~ -1.8 10^{-12} 1/yr. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function.Comment: 15 pages, 4 figures, accepted for publication in JCA

    Edge magnetoplasmons in periodically modulated structures

    Full text link
    We present a microscopic treatment of edge magnetoplasmons (EMP's) within the random-phase approximation for strong magnetic fields, low temperatures, and filling factor ν=1(2)\nu =1(2), when a weak short-period superlattice potential is imposed along the Hall bar. The modulation potential modifies both the spatial structure and the dispersion relation of the fundamental EMP and leads to the appearance of a novel gapless mode of the fundamental EMP. For sufficiently weak modulation strengths the phase velocity of this novel mode is almost the same as the group velocity of the edge states but it should be quite smaller for stronger modulation. We discuss in detail the spatial structure of the charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex

    A covariant diquark-quark model of the nucleon in the Salpeter approach

    Get PDF
    We develop a rather simple, formally covariant quark-diquark model of the nucleon. The nucleon is treated as a bound state of a constituent quark and a diquark interacting via a quark exchange. We include both scalar and axial-vector diquarks. The underlying Bethe-Salpeter equation is transformed into a pair of coupled Salpeter equations. The electromagnetic form factors of the nucleon are calculated in the Mandelstam formalism. We obtain a very good description of all electromagnetic form factors for momentum transfers up to -3 (GeV/c)^2.Comment: 17 pages, REVTeX, 10 figures (ps and eps) include

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Electromagnetic form factors of the nucleon in a covariant diquark model

    Get PDF
    We present a simple covariant constituent diquark-quark model for the nucleon. The nucleon is assumed to be composed of a scalar diquark and a quark which interact via a quark exchange. Starting from the Bethe-Salpeter equation, the instantaneous approximation leads to a diquark-quark Salpeter equation. In the Mandelstam formalism, the electromagnetic form factors of the nucleon are calculated for momentum transfers up to q^2 = - 3 \; (\mbox{GeV/c})^2. A remarkable description of the experimental data is obtained. Especially, the model gives nearly the right values for the proton and (negative) neutron charge radii, and a qualitative description of the magnetic form factors.Comment: 17 pages, revtex, 8 figures in additional fil

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Modelling the impacts of wildfire on the viability of metapopulations of the endangered Australian species of arboreal marsupial, Leadbeater's Possum

    Get PDF
    Catastrophic events such as intensive wildfires have a major effect on the dynamics of some wildlife populations. In this investigation, the computer package ALEX (Analysis of the Likelihood of EXtinction), was used to simulate the impacts of wildfires on the persistence of metapopulations of the endangered species Leadbeater's possum (Gymnobelideus leadbeateri) which is restricted to the montane ash forests of the Central Highlands of Victoria. A range of scenarios was examined. First, the response of G. leadbeateri to tires in hypothetical patches of old growth forest of varying size was modelled. Metapopulation dynamics were then modelled in four existing forest management areas: the O'Shannassy Water Catchment and the Steavenson, Ada and Murrindindi Forest Blocks using GIS-derived forest inventory data on complex spatial arrangements of potentially suitable old growth habitat patches. The impacts of different fire frequencies and the proportion of forest area that was burnt in the Steavenson Forest Block and the O'Shannassy Water Catchment were examined. Finally, the combined impacts of both wildfires and post-fire salvage logging operations on the persistence of populations of G. leadbeateri were assessed. Our analyses indicated that, even in the absence of wildfires, populations of G. leadbeateri are very susceptible to extinction within single isolated habitat patches of 20 ha or less. The probability of persistence approached 100% in patches of 250 ha. The incorporation of the effects of wildfire was predicted to have a major negative impact on isolated populations of G. leadbeateri. In these cases, the probability of population extinction remained above 60%, even when a single patch of 1200 ha of old growth forest was modelled. In the absence of wildfires, there was a low probability of extinction of G. leadbeateri in the O'Shannassy Water Catchment where very large patches of old growth forest presently exist. The risk of extinction of the species was significantly higher in the Murrindindi and Ada Forest Blocks where there are lower total areas of, and significantly smaller, suitable habitat patches. Wildfires resulted in an increase in the predicted probability of metapopulation extinction in the four areas that were targeted for study. An investigation of the Steavenson Forest Block and the O'Shannassy Water Catchment revealed that the predicted values for the probability of extinction were sensitive to inter-relationships between the frequency of fires and the proportion of habitat patches that were burnt during a given fire event. The probability of extinction of G. leadbeateri was predicted to be lowest when there were frequent fires that burnt only relatively small areas of a given forest block. Conversely, the results of our analyses suggested that populations of the species are vulnerable to infrequent but intensive conflagrations that burnt a large proportion of the forest. The results of the suite of analyses completed in this study suggest hat four management strategies will be important for the long-term conservation of G. leadbeateri. (1) Attempts to suppress wildfires should be maintained as even the largest remaining areas of old growth forest may be susceptible to being burnt by repeated widespread wildfires that could result in localised and/or global extinction of the species. (2) Because the probability of population persistence is greatest in those areas that support more extensive stands of old growth forest, it will be important to grow relatively large patches of existing regrowth forest (over 50 ha) through to ecological maturity. This will be particularly important in some wood production forest blocks where there are only limited areas of old growth forest. (3) Patches that are set aside for the conservation of G. leadbeateri should be spatially separated to minimise the risk that all of the reserved areas in a region are destroyed in a single major fire event. (4) Salvage logging operations should be excluded from stands of old growth forest and reserved areas that are burnt in a wildfire. This is because such activities can have a major negative impact of the development of suitable habitat for G. leadbeateri

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link
    corecore