412 research outputs found

    A numerical approach to robust in-line control of roll forming processes

    Get PDF
    The quality of roll formed products is known to be highly sensitive and dependent on the process parameters and thus the unavoidable variations of these parameters during mass production. To maintain a constant high product quality, a new roll former with an adjustable final roll forming stand is developed at Deakin University enabling the continuous compensation for possible shape defects. In this work, a numerical approach to robust in-line control of the roll forming of a V-section profile is presented, combining the aspects of robust process design and in-line compensation methods. A numerical study is performed to determine the relationship between controllable process settings and uncontrollable variation of incoming material properties with respect to the common product defects longitudinal bow and springback. The computationally expensive non-linear FE simulations used in this study are subsequently replaced by metamod-els based on efficient Single Response Surfaces. Using these metamodels, the optimal setting for the adjustable stand is determined with robust optimization techniques and the effect on product quality analyzed. It is shown that the subsequent adjustment of the final roll stand position leads to a significantly improved product quality by preventing product defects and minimizing the deteriorating effects of scattering variables

    A continuous time random walk model for financial distributions

    Get PDF
    We apply the formalism of the continuous time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the US dollar/Deutsche Mark future exchange, finding good agreement between theory and the observed data.Comment: 14 pages, 5 figures, revtex4, submitted for publicatio

    Dijet production as a centrality trigger for p-p collisions at CERN LHC

    Full text link
    We demonstrate that a trigger on hard dijet production at small rapidities allows to establish a quantitative distinction between central and peripheral collisions in pbar-p and p-p collisions at Tevatron and LHC energies. Such a trigger strongly reduces the effective impact parameters as compared to minimum bias events. This happens because the transverse spatial distribution of hard partons (x >~ 10^{-2}) in the proton is considerably narrower than that of soft partons, whose collisions dominate the total cross section. In the central collisions selected by the trigger, most of the partons with x >~ 10^{-2} interact with a gluon field whose strength rapidly increases with energy. At LHC (and to some extent already at Tevatron) energies the strength of this interaction approaches the unitarity ('black-body') limit. This leads to specific modifications of the final state, such as a higher probability of multijet events at small rapidities, a strong increase of the transverse momenta and depletion of the longitudinal momenta at large rapidities, and the appearance of long-range correlations in rapidity between the forward/backward fragmentation regions. The same pattern is expected for events with production of new heavy particles (Higgs, SUSY). Studies of these phenomena would be feasible with the CMS-TOTEM detector setup, and would have considerable impact on the exploration of the physics of strong gluon fields in QCD, as well as the search for new particles at LHC.Comment: 17 pages, Revtex 4, 14 EPS figures. Expanded discussion of some points, added 3 new figures and new references. Included comment on connection with cosmic ray physics near the GZK cutoff. To appear in Phys Rev

    Schur functions and their realizations in the slice hyperholomorphic setting

    Get PDF
    we start the study of Schur analysis in the quaternionic setting using the theory of slice hyperholomorphic functions. The novelty of our approach is that slice hyperholomorphic functions allows to write realizations in terms of a suitable resolvent, the so called S-resolvent operator and to extend several results that hold in the complex case to the quaternionic case. We discuss reproducing kernels, positive definite functions in this setting and we show how they can be obtained in our setting using the extension operator and the slice regular product. We define Schur multipliers, and find their co-isometric realization in terms of the associated de Branges-Rovnyak space

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Factors Associated with Nodal Pathologic Complete Response Among Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: Results of CALGB 40601 (HER2+) and 40603 (Triple-Negative) (Alliance)

    Get PDF
    Background: De-escalation of axillary surgery after neoadjuvant chemotherapy (NAC) requires careful patient selection. We seek to determine predictors of nodal pathologic complete response (ypN0) among patients treated on CALGB 40601 or 40603, which tested NAC regimens in HER2+ and triple-negative breast cancer (TNBC), respectively. Patients and Methods: A total of 760 patients with stage II–III HER2+ or TNBC were analyzed. Those who had axillary surgery before NAC (N = 122), or who had missing pretreatment clinical nodal status (cN) (N = 58) or ypN status (N = 41) were excluded. The proportion of patients with ypN0 disease was estimated for those with and without breast pathologic complete response (pCR) according to pretreatment nodal status. Results: In 539 patients, the overall ypN0 rate was 76.3% (411/539) to 93.2% (245/263) in patients with breast pCR and 60.1% (166/276) with residual breast disease (RD) (P < 0.0001). For patients who were cN0 pretreatment, the ypN0 rate was 88.8% (214/241), 96.3% (104/108) with breast pCR, and 82.7% (110/133) with RD. For patients who were cN1, 66.2% (157/237) converted to ypN0, 91.7% (111/121) with breast pCR and 39.7% (46/116) with RD. For patients who were cN2/3, 65.6% (40/61) converted to ypN0, 88.2% (30/34) with breast pCR and 37.0% (10/27) with RD. On multivariable analysis, only pretreatment clinical nodal status and breast pCR/RD were associated with ypN0 status (both P < 0.0001). Conclusions: Breast pCR and pretreatment nodal status are predictive of ypN0 axillary nodal involvement, with < 5% residual nodal disease among cN0 patients who experience breast pCR. These findings support the incorporation of axillary surgery de-escalation strategies into NAC trials

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Genetics of tension-type headache

    Get PDF
    The objective of this study was to investigate the importance of genetics in tension-type headache. A MEDLINE search from 1966 to December 2006 was performed for “tension-type headache and prevalence” and “tension-type headache and genetics” The prevalence of tensiontype headache varies from 11 to 93%, with a slight female preponderance. Co-occurrence of migraine increases the frequency of tension-type headache. A family study of chronic tension-type headache suggests that genetic factors are important. A twin study analysing tension-type headache in migraineurs found that genetic factors play a minor role in episodic tension-type headache. Another twin study analysing twin pairs without co-occurrence of migraine showed a significantly higher concordance rate among monozygotic than same-gender dizygotic twin pairs with no or frequent episodic tension-type headache, while the difference was minor in twin pairs with infrequent episodic tensiontype headache. Frequent episodic and chronic tension-type headache is caused by a combination of genetic and environmental factors, while infrequent episodic tensiontype headache is caused primarily by environmental factors
    • 

    corecore