146 research outputs found

    The Effects of Temperature on Clot Microstructure and Strength in Healthy Volunteers

    Get PDF
    BACKGROUND: Anesthesia, critical illness, and trauma are known to alter thermoregulation, which can potentially affect coagulation and clinical outcome. This in vitro preclinical study explores the relationship between temperature change and hemostasis using a recently validated viscoelastic technique. We hypothesize that temperature change will cause significant alterations in the microstructural properties of clot. METHODS: We used a novel viscoelastic technique to identify the gel point of the blood. The gel point identifies the transition of the blood from a viscoelastic liquid to a viscoelastic solid state. Furthermore, identification of the gel point provides 3 related biomarkers: the elastic modulus at the gel point, which is a measure of clot elasticity; the time to the gel point (TGP), which is a measure of the time required to form the clot; and the fractal dimension of the clot at the gel point, df, which quantifies the microstructure of the clot. The gel point measurements were performed in vitro on whole blood samples from 136 healthy volunteers over a temperature range of 27°C to 43°C. RESULTS: There was a significant negative correlation between increases in temperature, from 27°C to 43°C, and TGP (r = −0.641, P 37°C. CONCLUSIONS: This study demonstrates that the gel point technique can identify alterations in clot microstructure because of changes in temperature. This was demonstrated in slower-forming clots with less structural complexity as temperature is decreased. We also found that significant changes in clot microstructure occurred when the temperature was ≤32°C

    Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling

    Get PDF
    Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties. This journal i

    Online prevention programmes for university students: stakeholder perspectives from six European countries

    Get PDF
    Background: Students beginning university are at a heightened risk for developing mental health disorders. Online prevention and early intervention programmes targeting mental health have the potential to reduce this risk, however, previous research has shown uptake to be rather poor. Understanding university stakeholders' (e.g. governing level and delivery staff [DS] and students) views and attitudes towards such online prevention programmes could help with their development, implementation and dissemination within university settings. Methods: Semi-structured interviews, focus groups and online surveys were completed with staff at a governing level, university students and DS (i.e. student health or teaching staff) from six European countries. They were asked about their experiences with, and needs and attitudes towards, online prevention programmes, as well as the factors that influence the translation of these programmes into real-world settings. Results were analyzed using thematic analysis. Results: Participating stakeholders knew little about online prevention programmes for university settings; however, they viewed them as acceptable. The main themes to emerge were the basic conditions and content of the programmes, the awareness and engagement, the resources needed, the usability and the responsibility and ongoing efforts to increase reach. Conclusions: Overall, although these stakeholders had little knowledge about online prevention programmes, they were open to the idea of introducing them. They could see the potential benefits that these programmes might bring to a university setting as a whole and the individual students and staff members

    NCO-sP(EO-stat-PO) Coatings on Gold Sensors—a QCM Study of Hemocompatibility

    Get PDF
    The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide—polypropylene oxide co-polymers NCO-sP(EO-stat-PO) when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM) sensors were coated with ultrathin NCO-sP(EO-stat-PO) films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP), followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP). Thrombin antithrombin-III complex (TAT), β-thromboglobulin (β-TG) and platelet factor 4 (PF4) were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM) was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO) coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO) films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules

    Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding

    Get PDF
    The recognition of cryptic small-molecular binding sites in protein structures is important for understanding off-target side effects and for recognizing potential new indications for existing drugs. Current methods focus on the geometry and detailed chemical interactions within putative binding pockets, but may not recognize distant similarities where dynamics or modified interactions allow one ligand to bind apparently divergent binding pockets. In this paper, we introduce an algorithm that seeks similar microenvironments within two binding sites, and assesses overall binding site similarity by the presence of multiple shared microenvironments. The method has relatively weak geometric requirements (to allow for conformational change or dynamics in both the ligand and the pocket) and uses multiple biophysical and biochemical measures to characterize the microenvironments (to allow for diverse modes of ligand binding). We term the algorithm PocketFEATURE, since it focuses on pockets using the FEATURE system for characterizing microenvironments. We validate PocketFEATURE first by showing that it can better discriminate sites that bind similar ligands from those that do not, and by showing that we can recognize FAD-binding sites on a proteome scale with Area Under the Curve (AUC) of 92%. We then apply PocketFEATURE to evolutionarily distant kinases, for which the method recognizes several proven distant relationships, and predicts unexpected shared ligand binding. Using experimental data from ChEMBL and Ambit, we show that at high significance level, 40 kinase pairs are predicted to share ligands. Some of these pairs offer new opportunities for inhibiting two proteins in a single pathway

    Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling

    Get PDF
    Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties

    Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial

    Get PDF
    Background Early rapid fluid resuscitation (boluses) in African children with severe febrile illnesses increases the 48-hour mortality by 3.3% compared with controls (no bolus). We explored the effect of boluses on 48-hour all-cause mortality by clinical presentation at enrolment, hemodynamic changes over the first hour, and on different modes of death, according to terminal clinical events. We hypothesize that boluses may cause excess deaths from neurological or respiratory events relating to fluid overload. Methods Pre-defined presentation syndromes (PS; severe acidosis or severe shock, respiratory, neurological) and predominant terminal clinical events (cardiovascular collapse, respiratory, neurological) were described by randomized arm (bolus versus control) in 3,141 severely ill febrile children with shock enrolled in the Fluid Expansion as Supportive Therapy (FEAST) trial. Landmark analyses were used to compare early mortality in treatment groups, conditional on changes in shock and hypoxia parameters. Competing risks methods were used to estimate cumulative incidence curves and sub-hazard ratios to compare treatment groups in terms of terminal clinical events. Results Of 2,396 out of 3,141 (76%) classifiable participants, 1,647 (69%) had a severe metabolic acidosis or severe shock PS, 625 (26%) had a respiratory PS and 976 (41%) had a neurological PS, either alone or in combination. Mortality was greatest among children fulfilling criteria for all three PS (28% bolus, 21% control) and lowest for lone respiratory (2% bolus, 5% control) or neurological (3% bolus, 0% control) presentations. Excess mortality in bolus arms versus control was apparent for all three PS, including all their component features. By one hour, shock had resolved (responders) more frequently in bolus versus control groups (43% versus 32%, P <0.001), but excess mortality with boluses was evident in responders (relative risk 1.98, 95% confidence interval 0.94 to 4.17, P = 0.06) and 'non-responders' (relative risk 1.67, 95% confidence interval 1.23 to 2.28, P = 0.001), with no evidence of heterogeneity (P = 0.68). The major difference between bolus and control arms was the higher proportion of cardiogenic or shock terminal clinical events in bolus arms (n = 123; 4.6% versus 2.6%, P = 0.008) rather than respiratory (n = 61; 2.2% versus 1.3%, P = 0.09) or neurological (n = 63, 2.1% versus 1.8%, P = 0.6) terminal clinical events. Conclusions Excess mortality from boluses occurred in all subgroups of children. Contrary to expectation, cardiovascular collapse rather than fluid overload appeared to contribute most to excess deaths with rapid fluid resuscitation. These results should prompt a re-evaluation of evidence on fluid resuscitation for shock and a re-appraisal of the rate, composition and volume of resuscitation fluids. Trial registration: ISRCTN6985659
    corecore