990 research outputs found

    N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    Get PDF
    Reactive nitrogen (Nr) is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O) emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required

    The impact of high-end climate change on agricultural welfare

    Get PDF
    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered

    To what extent is climate change adaptation a novel challenge for agricultural modellers?

    Get PDF
    Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change

    Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement

    Get PDF
    Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions. © 2022, The Author(s)

    Does collaborative farm-scale modelling address current challenges and future opportunities?

    Get PDF
    Resources required increasing, resources available decreasingFarm-scale modellers will need to make strategic decisionsSingle-owner modelsMay continue with additional resourcesRisk of ‘succession’ problemCommunity modelling is an alternativeNeed to continue building a community of farm modellersThe results will be published as a peer-reviewed article

    Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    Get PDF
    Livestock farming is the world's largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction

    Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons

    Full text link
    The flux of cosmic-ray induced single hadrons near sea level has been measured with the large hadron calorimeter of the KASCADE experiment. The measurement corroborates former results obtained with detectors of smaller size if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be described with a power law parametrized as dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV region the proton flux compares well with the results from recent measurements of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa

    Large scale cosmic-ray anisotropy with KASCADE

    Full text link
    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.Comment: accepted by The Astrophysical Journa
    • 

    corecore