449 research outputs found

    Presence of the transmembrane protein neuropilin in cytokine-induced killer cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are a heterogenous population of immune cells showing promising applications in immunotherapeutic cancer treatment. Neuropilin (NRP) proteins have been proven to play an important role in cancer development and prognosis. In this study, CIK cells were tested for expression of NRPs, transmembrane proteins playing a role in the proliferation and survival of cancer cells. Materials and Methods: CIK cells were analyzed at different time points via flow cytometry and quantitative real-time polymerase chain reaction for neuropilin expression. Results: Phenotyping results showed CIK cells having developed properly, and low levels of NRP2 were detected. On the other hand, no NRP1 expression was found. Two cancer cell lines were tested by flow cytometry: A549 cells expressed NRP1 and NRP2; U251-MG cells expressed high amounts of NRP2. CIK cell showed low levels of NRP2 expression on day 14. Conclusion: The presence of NRP2, but not NRP1, was shown for CIK cells. Recognizing NRP2 in CIK cells might help to improve CIK cell cytotoxicity

    FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells against Renal and Pancreatic Cancer Cells

    Get PDF
    Background/Aim: Cytokine-induced killer (CIK) cells are ex vivo expanded major histocompatibility complex (MHC)-unrestricted cytotoxic cells with promising effects against a variety of cancer types. Regulatory T-cells (T-reg) have been shown to reduce the effectiveness of CIK cells against tumor cells. Peptide P60 has been shown to inhibit the immunosuppressive functions of T-regs. This study aimed at examining the effect of p60 on CIK cells efficacy against renal and pancreatic cancer cells. Materials and Methods: The effect of P60 on CIK cytotoxicity was examined using flow cytometry, WST-8-based cell viability assay and interferon γ (IFNγ) ELISA. Results: P60 treatment resulted in a significant decrease in the viability of renal and pancreatic cancer cell lines co-cultured with CIK cells. No increase in IFNγ secretion from CIK cells was detected following treatment with P60. P60 caused no changes in the distribution of major effector cell populations in CIK cell cultures. Conclusion: P60 may potentiate CIK cell cytotoxicity against tumor cells

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    Get PDF
    Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles

    Termination of Solar Cycles and Correlated Tropospheric Variability

    Get PDF
    The Sun provides the energy required to sustain life on Earth and drive our planet's atmospheric circulation. However, establishing a solid physical connection between solar and tropospheric variability has posed a considerable challenge. The canon of solar variability is derived from the 400 years of observations that demonstrates the waxing and waning number of sunspots over an 11(-ish) year period. Recent research has demonstrated the significance of the underlying 22 years magnetic polarity cycle in establishing the shorter sunspot cycle. Integral to the manifestation of the latter is the spatiotemporal overlapping and migration of oppositely polarized magnetic bands. We demonstrate the impact of “terminators”—the end of Hale magnetic cycles—on the Sun's radiative output and particulate shielding of our atmosphere through the rapid global reconfiguration of solar magnetism. Using direct observation and proxies of solar activity going back some six decades we can, with high statistical significance, demonstrate a correlation between the occurrence of terminators and the largest swings of Earth's oceanic indices: the transition from El Niño to La Niña states of the central Pacific. This empirical relationship is a potential source of increased predictive skill for the understanding of El Niño climate variations, a high-stakes societal imperative given that El Niño impacts lives, property, and economic activity around the globe. A forecast of the Sun's global behavior places the next solar cycle termination in mid-2020; should a major oceanic swing follow, then the challenge becomes: when does correlation become causation and how does the process work

    Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics

    Get PDF
    Biodiversity plays an integral role in the livelihoods of subsistence-based forest-dwelling communities and as a consequence it is increasingly important to develop quantitative approaches that capture not only changes in taxonomic diversity, but also variation in natural resources and provisioning services. We apply a functional diversity metric originally developed for addressing questions in community ecology to assess utilitarian diversity of 56 forest plots in Madagascar. The use categories for utilitarian plants were determined using expert knowledge and household questionnaires. We used a null model approach to examine the utilitarian (functional) diversity and utilitarian redundancy present within ecological communities. Additionally, variables that might influence fluctuations in utilitarian diversity and redundancy—specifically number of felled trees, number of trails, basal area, canopy height, elevation, distance from village—were analyzed using Generalized Linear Models (GLMs). Eighteen of the 56 plots showed utilitarian diversity values significantly higher than expected. This result indicates that these habitats exhibited a low degree of utilitarian redundancy and were therefore comprised of plants with relatively distinct utilitarian properties. One implication of this finding is that minor losses in species richness may result in reductions in utilitarian diversity and redundancy, which may limit local residents' ability to switch between alternative choices. The GLM analysis showed that the most predictive model included basal area, canopy height and distance from village, which suggests that variation in utilitarian redundancy may be a result of local residents harvesting resources from the protected area. Our approach permits an assessment of the diversity of provisioning services available to local communities, offering unique insights that would not be possible using traditional taxonomic diversity measures. These analyses introduce another tool available to conservation biologists for assessing how future losses in biodiversity will lead to a reduction in natural resources and provisioning services from forests

    The Impact of Advocacy Organizations on Low-Income Housing Policy in U.S. Cities

    Get PDF
    Financial support for affordable housing competes with many other municipal priorities. This work seeks to explain the variation in support for affordable housing among U.S. cities with populations of 100,000 or more. Using multivariate statistical analysis, this research investigates political explanations for the level of city expenditures on housing and community with a particular interest in the influence of housing advocacy organizations (AOs). Data for the model were gathered from secondary sources, including the U.S. Census and the National Center for Charitable Statistics. Among other results, the analysis indicates that, on average, the political maturity of AOs has a statistically significant, positive effect on local housing and community development expenditures

    Sensitivity of Metrics of Phylogenetic Structure to Scale, Source of Data and Species Pool of Hummingbird Assemblages along Elevational Gradients

    Get PDF
    Patterns of phylogenetic structure of assemblages are increasingly used to gain insight into the ecological and evolutionary processes involved in the assembly of co-occurring species. Metrics of phylogenetic structure can be sensitive to scaling issues and data availability. Here we empirically assess the sensitivity of four metrics of phylogenetic structure of assemblages to changes in (i) the source of data, (ii) the spatial grain at which assemblages are defined, and (iii) the definition of species pools using hummingbird (Trochilidae) assemblages along an elevational gradient in Colombia. We also discuss some of the implications in terms of the potential mechanisms driving these patterns. To explore how source of data influence phylogenetic structure we defined assemblages using three sources of data: field inventories, museum specimens, and range maps. Assemblages were defined at two spatial grains: coarse-grained (elevational bands of 800-m width) and fine-grained (1-km2 plots). We used three different species pools: all species contained in assemblages, all species within half-degree quadrats, and all species either above or below 2000 m elevation. Metrics considering phylogenetic relationships among all species within assemblages showed phylogenetic clustering at high elevations and phylogenetic evenness in the lowlands, whereas those metrics considering only the closest co-occurring relatives showed the opposite trend. This result suggests that using multiple metrics of phylogenetic structure should provide greater insight into the mechanisms shaping assemblage structure. The source and spatial grain of data had important influences on estimates of both richness and phylogenetic structure. Metrics considering the co-occurrence of close relatives were particularly sensitive to changes in the spatial grain. Assemblages based on range maps included more species and showed less phylogenetic structure than assemblages based on museum or field inventories. Coarse-grained assemblages included more distantly related species and thus showed a more even phylogenetic structure than fine-grained assemblages. Our results emphasize the importance of carefully selecting the scale, source of data and metric used in analysis of the phylogenetic structure of assemblages

    Inferring Ecological Processes from Taxonomic, Phylogenetic and Functional Trait β-Diversity

    Get PDF
    Understanding the influences of dispersal limitation and environmental filtering on the structure of ecological communities is a major challenge in ecology. Insight may be gained by combining phylogenetic, functional and taxonomic data to characterize spatial turnover in community structure (β-diversity). We develop a framework that allows rigorous inference of the strengths of dispersal limitation and environmental filtering by combining these three types of β-diversity. Our framework provides model-generated expectations for patterns of taxonomic, phylogenetic and functional β-diversity across biologically relevant combinations of dispersal limitation and environmental filtering. After developing the framework we compared the model-generated expectations to the commonly used “intuitive” expectation that the variance explained by the environment or by space will, respectively, increase monotonically with the strength of environmental filtering or dispersal limitation. The model-generated expectations strongly departed from these intuitive expectations: the variance explained by the environment or by space was often a unimodal function of the strength of environmental filtering or dispersal limitation, respectively. Therefore, although it is commonly done in the literature, one cannot assume that the strength of an underlying process is a monotonic function of explained variance. To infer the strength of underlying processes, one must instead compare explained variances to model-generated expectations. Our framework provides these expectations. We show that by combining the three types of β-diversity with model-generated expectations our framework is able to provide rigorous inferences of the relative and absolute strengths of dispersal limitation and environmental filtering. Phylogenetic, functional and taxonomic β-diversity can therefore be used simultaneously to infer processes by comparing their empirical patterns to the expectations generated by frameworks similar to the one developed here
    corecore