2,745 research outputs found

    Simplified landscapes for optimization of shaken lattice interferometry

    Get PDF
    Motivated by recent results using shaken optical lattices to perform atom interferometry, we explore splitting of an atom cloud trapped in a phase-modulated ("shaken") optical lattice. Using a simple analytic model we are able to show that we can obtain the simplest case of ±2kL\pm2\hbar k_\mathrm{L} splitting via single-frequency shaking. This is confirmed both via simulation and experiment. Furthermore, we are able to split with a relative phase θ\theta between the two split arms of 00 or π\pi depending on our shaking frequency. Addressing higher-order splitting, we determine that ±6kL\pm6\hbar k_\mathrm{L} splitting is sufficient to be able to accelerate the atoms in counter-propagating lattices. Finally, we show that we can use a genetic algorithm to optimize ±4kL\pm4\hbar k_\mathrm{L} and ±6kL\pm6\hbar k_\mathrm{L} splitting to within 0.1%\approx0.1\% by restricting our optimization to the resonance frequencies corresponding to single- and two-photon transitions between Bloch bands

    Flow establishment in a generic scramjet combustor

    Get PDF
    The establishment of a quasi-steady flow in a generic scramjet combustor was studied for the case of a time varying inflow to the combustor. Such transient flow is characteristic of the reflected shock tunnel and expansion tube test facilities. Several numerical simulations of hypervelocity flow through a straight duct combustor with either a side wall step fuel injector or a centrally located strut injector are presented. Comparisons were made between impulsively started but otherwise constant flow conditions (typical of the expansion tube or tailored operations of the reflected shock tunnel) and the relaxing flow produced by the 'undertailored' operations of the reflected shock tunnel. Generally the inviscid flow features, such as the shock pattern and pressure distribution, were unaffected by the time varying inlet conditions and approached steady state in approx. the times indicated by experimental correlations. However, viscous features, such as heat transfer and skin friction, were altered by the relaxing inlet flow conditions

    Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to MNRA

    New Horizons Solar Wind Around Pluto (SWAP) Observations of the Solar Wind From 11-33 AU

    Get PDF
    The Solar Wind Around Pluto (SWAP) instrument on NASA's New Horizon Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 AU observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T-V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T-V correlation clearly breaks down beyond 20 AU, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 AU indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.Comment: 55 pages, 29 Figures, accepted for publication in The Astrophysical Journal Supplements (ApJS

    Models of Earth's Atmosphere (120 to 1000 Km)

    Get PDF
    Atmospheric conditions encountered by a spacecraft in orbit about the Earth are important factors in space vehicle design, mission planning, and mission operations. Density is the primary atmospheric property that affects the spacecraft's orbital altitude, lifetime, and motion in the altitude range of 120 to 1000 kilometers. Near the lower limit of this range where density is greatest, a spacecraft will generally remain in orbit for a very short time; near the upper limit, the density effect on orbital lifetime is almost negligible. Density directly affects the torques which result from aerodynamic interaction between the space vehicle and the atmosphere; such torques must be considered in design of spacecraft attitude control systems. Density scale height is required in heating calculations for space vehicles re-entering the Earth's upper atmosphere. Density as well as chemical composition and temperature are needed in calculating a spacecraft's drag coefficient. Chemical composition and temperature also are required in the design of experiment sensors to be flown in this altitude range. Because of variability of atmospheric conditions with spatial location and solar condition, invariant models of the Earth's atmosphere (120 to 1000 kilometers) would not be useful for most engineering applications. Therefore, this monograph presents a computerized version of Jacchia's prediction method to provide models of the Earth's atmosphere which vary with solar condition and location. The resulting atmospheric models, which are predicted for particular times and locations, provide atmospheric density, chemical composition, temperature, molecular mass, and density scale height between 120 and 1000 kilometers altitude. In addition to the computerized method, a quick-look prediction method is given that may be used to obtain an estimate of atmospheric density for any time and spatial location without the use of a computer. A sample problem illustrates this method. Both methods provide models of mean density and models having reasonable upper extremes for density. The analytical approaches in both methods are considered to be the best available, but they could be refined considerably by additional data and study. Information contained in this monograph applies to altitudes between 120 and 1000 kilometers; other design criteria monographs in this series will provide atmospheric information below this altitude region

    The Stellar Initial Mass Function in the Galactic Center

    Full text link
    Massive stars define the upper limits of the star formation process, dominate the energetics of their local environs, and significantly affect the chemical evolution of galaxies. Their role in starburst galaxies and the early Universe is likely to be important, but we still do not know the maximum mass that a star can possess, i.e.``the upper mass cutoff.'' I will discuss results from a program to measure the upper mass cutoff and IMF slope in the Galactic Center. The results suggest that the IMF in the Galactic center may deviate significantly from the Salpeter value, and that there may be an upper mass cutoff to the initial mass function of \sim150 Msun.Comment: To be published in the IMF@50 conference proceeding

    Star formation scales and efficiency in Galactic spiral arms

    Get PDF
    We positionally match a sample of infrared-selected young stellar objects, identified by combining the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Wide-field Infrared Survey Explorer and Herschel Space Observatory Herschel infrared Galactic Plane Survey, to the dense clumps identified in the millimetre continuum by the Bolocam Galactic Plane Survey in two Galactic lines of sight centred towards l = 30° and 40°. We calculate the ratio of infrared luminosity, LIR, to the mass of the clump, Mclump, in a variety of Galactic environments and find it to be somewhat enhanced in spiral arms compared to the interarm regions when averaged over kiloparsec scales. We find no compelling evidence that these changes are due to the mechanical influence of the spiral arm on the star formation efficiency rather than, e.g. different gradients in the star formation rate due to patchy or intermittent star formation, or local variations that are not averaged out due to small source samples. The largest variation in LIR/Mclump is found in individual clump values, which follow a lognormal distribution and have a range of over three orders of magnitude. This spread is intrinsic as no dependence of LIR/Mclump with Mclump was found. No difference was found in the luminosity distribution of sources in the arm and interarm samples and a strong linear correlation was found between LIR and Mclump

    Synthesis of niobium-alumina composite aggregates and their application in coarse-grained refractory ceramic-metal castables

    Get PDF
    Niobium-alumina aggregate fractions with particle sizes up to 3150 µm were produced by crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the aggregate class 45–500 µm was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-based impurities, no organic additives were used for the castable mixtures, which resulted in water demands of approximately 27 vol.% for the fine- and coarse-grained castables. As a consequence, open porosities of 18% and 30% were determined for the fine- and coarse-grained composites, respectively. Due to increased porosity, the modulus of rupture at room temperature decreased from 52 MPa for the fine-grained composite to 11 MPa for the coarse-grained one. However, even the compressive yield strength decreased from 49 MPa to 18 MPa at 1300 °C for the fine-grained to the coarse-grained composite, the latter showed still plasticity with a strain up to 5%. The electrical conductivity of fine-grained composite samples was in the range between 40 and 60 S/cm, which is fifteen magnitudes above the values of pure corundum
    corecore