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Abstract: Niobium-alumina aggregate fractions with particle sizes up to 3150 µm were produced by
crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the
aggregate class 45–500 µm was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-
based impurities, no organic additives were used for the castable mixtures, which resulted in water
demands of approximately 27 vol.% for the fine- and coarse-grained castables. As a consequence,
open porosities of 18% and 30% were determined for the fine- and coarse-grained composites,
respectively. Due to increased porosity, the modulus of rupture at room temperature decreased from
52 MPa for the fine-grained composite to 11 MPa for the coarse-grained one. However, even the
compressive yield strength decreased from 49 MPa to 18 MPa at 1300 °C for the fine-grained to the
coarse-grained composite, the latter showed still plasticity with a strain up to 5%. The electrical
conductivity of fine-grained composite samples was in the range between 40 and 60 S/cm, which is
fifteen magnitudes above the values of pure corundum.

Keywords: refractory composite; aggregate synthesis; castable

1. Introduction

Refractory ceramics are typically used in metallurgy applications. They are charac-
terised by good mechanical properties, good thermal shock behaviour as well as producibil-
ity of large, coarse-grained components by water-based casting processes, such as pressure
slip casting [1] or castable technology [2].

All physical and mechanical properties of refractory castables are depending on the
firing temperature. The higher the firing temperature of the castables the more pronounced
is the ceramic bonding of the fine matrix. Hence, the high degree of sintering results in
lowering porosity and enhancing both modulus of rupture as well as Young´s modulus [3].
The open porosity of conventional alumina castables bonded with high alumina cement
fired at 1000 °C varies from 20% to 30% depending on the type of aggregates and cement
used [4]

After firing at 1600 °C, the low cement castables (LCC) and cement-free castables (NCC)
based on alumina have an open porosity in the range from 15 to 20% [5]. The Young’s
moduli of alumina at ambient temperature of such castables range between 60 GPa and
100 GPa depending on the chemical and granulometric composition [6]. For the industrial

Materials 2021, 14, 6453. https://doi.org/10.3390/ma14216453 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-1078-784X
https://orcid.org/0000-0002-0476-7781
https://orcid.org/0000-0003-3624-8940
https://orcid.org/0000-0002-3985-0120
https://orcid.org/0000-0002-6432-902X
https://orcid.org/0000-0002-6036-0687
https://doi.org/10.3390/ma14216453
https://doi.org/10.3390/ma14216453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14216453
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14216453?type=check_update&version=3


Materials 2021, 14, 6453 2 of 18

application of refractory castables, a detailed evaluation of predominant stress conditions
is essential. If a high erosion resistance is required, the microstructure of the castables
should be highly sintered with a low degree of porosity. Nevertheless, the high degree
of sintering involves a pure brittle behaviour accompanied by a high susceptibility to
cracking and subsequent spalling. Otherwise, if high thermal shock resistance is of prime
importance, a low Young´s modulus and relative high porosity are beneficial, provided
that the mechanical stability, i.e., sufficient modulus of rupture, is ensured. The shrinkage
of coarse-grained castable during the sintering should not exceed a value of 2% to prevent
crack formation.

Ceramic-matrix and metal-matrix composites have been investigated since several
decades [7]. In particular, the combination of ceramics with refractory metals is of interest
for high-temperature and wear applications, e.g., corundum-molybdenum [8–11]; mullite-
molybdenum [12–14]; zirconia-(tantalum, niobium) [15,16]. In that works, fine-grained
powders were used to produce dense sintered composites focusing on improving the
mechanical properties of the ceramic part by the combination of the ceramic’s high strength
and the metal’s toughness and grain fining ability [17]. High shrinkage on sintering,
limited thermal shock ability and/or the sintering technology as hot isostatic pressing are
restricting the maximum size of fine-grained components in fabrication.

The concept of coarse-grained refractory composites based on tantalum-alumina and
niobium-alumina was recently introduced [18] combining the fields of powder metallurgy
and castable technology. Shrinkage values of ≈1% and good mechanical properties at
ambient temperature as well as in the temperature range of 1300–1500 °C [19] were obtained.
Low shrinkage on sintering causes also low values of residual stresses in the refractory
ceramic, which enables one to fabricate large refractory components. Refractory composite
castables based on coarse-grained tabular alumina and fine-grained metal of 11 vol.% and
21 vol.% substituing the alumina matrix showed the best results regarding physical and
mechanical properties. It was suggested to produce pre-synthesised composite aggregates
for further composite castables.

The approach of refractory ceramic-metal castables aims to leverage the synergy ef-
fects of both refractory ceramics and refractory metals and hence to develop smart key
components for metallurgical industry with targeted functionalisation, such as integrated
electrodes for non-wetting behaviour [20], ladle sliding gate plates with enhanced ther-
mal shock properties, special casting nozzles with anti-clogging properties or integrated
heating elements.

The wetting behaviour of a liquid metal/ceramic system depends on the bonding
characteristics of both system components as well as on the magnitude of interactive
forces at the interface. It is characterised by the contact angle of the liquid drop formed
on the solid substrate indicating the chemical affinity between the two materials and
by the work of adhesion as a measure of interface adhesion strength [21]. Speaking
about industrial applications of refractory ceramics, it is necessary to know the interfacial
properties (surface/interfacial tension and surface segregation) of melts and characteristics
of solids (surface roughness, impurities, porosity) including the operating conditions such
as temperature, time, gas composition and pressure [22,23].

The aim of the present work is to investigate the feasibility to produce refractory
niobium-alumina composite material in a novel two-step castable procedure. The first
step comprises the synthesis of targeted niobium-alumina composite aggregrates while
the second step involves the production of coarse-grained refractory castables utilising the
pre-synthesised composite aggregates. Such a fractal design is needed in order to ensure a
coherent composition at different aggregate size scales and hence to achieve an electrical
conductivity and proper mechanical properties (thermal shock resistance, sufficient high-
temperature strength). For this purpose, the metallic phase should constitute 65 vol.% of
the composite material.
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2. Methods
2.1. Sample Preparation

Initially, the preliminary fine-grained material had to be synthesised and subsequently
crushed and sieved in fractions to obtain refractory metal-ceramic aggregates of different
sizes. The composite niobium-alumina aggregates were then used to produce coarse-
grained refractory composite castables.

The base material for the production of aggregates with an intended niobium amount
of 65 vol.% was synthesised from raw materials (particle sizes and chemical information
are listed in Table 1) as follows. Powders of niobium (EWG Wagner, Weissach, Ger-
many), alumina (Martoxid, Martinswerke, Germany), a hydratable alumina binder (Al-
phabond 300, Almatis, Ludwigshafen, Germany) and dispersing alumina (ADS-1, Almatis,
Ludwigshafen, Germany) were first dry mixed for one minute using an Eirich mixer
(Gustav-Eirich Maschinenfabrik, Hardheim, Germany) followed by wet mixing for four
minutes with step-wise water addition until almost self-flowability was achieved. The com-
position of the fine-grained composite material is given in Table 2. This mixture was then
filled in steel molds with dimensions of 25 mm × 25 mm × 150 mm by vibrational assisted
casting. After setting at room temperature for 48 h, the samples were demolded and dried
for 24 h at 130 °C in air atmosphere. Afterwards, the prisms were sintered at a temperature
of 1600 °C for 4 h in a corundum tube furnace under flowing argon atmosphere, which
was purified by a titanium getter. This material is hereinafter referred to as fine-grained
composite.

Table 1. Determined particle sizes of the used raw materials and their chemistry.

Material
Particle Size in µm

Purity Main Impurities
d10 d50 d90 dmax

niobium 75 99.95 wt.% Nb O, C, Ta
Martoxid 0.13 0.63 3.57 99.8 wt.% Al2O3 Na, Si, Ca, Fe
CT9FG 1.96 5.53 20.63 99.5 wt.% Al2O3 Na, Fe, Si
CL370 0.17 0.54 5.77 99.7 wt.% Al2O3 Na, Si, Fe, Ca

Alphabond300 4-8 30 88 wt.% Al2O3 (min) Ca, Na, Si

Table 2. Castable recipe for the fine-grained composite.

Material mass in g
Amount

in mass% in vol.%

niobium 1644.9 79.95 64.31
Martoxid (alumina) 395.1 19.21 33.60

Alphabond300 (binder) 12.2 0.59 1.47
ADS-1 (dispersant) 5.2 0.25 0.62

water 112.9 5.20 27.0

In a further step, the synthesised fine-grained prisms were broken and crushed using a
jaw crusher (BB50, Retsch, Haan, Germany) with jaws made from hard metal (92% WC–8%
Co). The crushed material was sieved into the four aggregate classes 0–45 µm, 45–500 µm,
500–1000 µm and 1000–3150 µm.

The particle size distribution (Bettersizer S3 plus, 3P Instruments GmbH & Co. KG,
Odelzhausen, Germany), density and phase assemblage using X-ray powder diffraction
(XRD) (Empyrean, Malvern Panalytical GmbH, Kassel, Germany) in combination with
Rietveld refinement using HighScore Plus 4.8 [24] of the synthesised composite aggre-
gates were determined. XRD measurements were done using Cu-Kα1 radiation between
15–140° 2Θ with 0.0143° step size and an exposion time of 160 s/step.

Densities were measured using mercury intrusion porosimetry (AutoPore V 9600,
Micromeritics Instrument Corp., Norcross, GA, USA) on particles according to DIN ISO
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15901-1:2019-03 and gas pycnometry with helium (AccuPyc 1340TEC, Micromeritics In-
strument Corp., Norcross, GA, USA) on fine-powdered material according to DIN 66137-
2:2019-03 of each aggregate class. In addition, true densities of each aggregate class were
calculated based on the results of the XRD/Rietveld analysis. Particle morphology of the
synthesised aggregates was investigated based on laser-scanning microscopy (VK-X1000,
Keyence Deutschland GmbH, Neu-Isenburg, Germany).

2.2. Design of Coarse-Grained Castables

Particle size distributions of castables can be mathematically described using particle
packing models expressing the cumulative sum curve or cumulative percent finer than particle
size d CPFT(d). A commonly used model is the Dinger–Funk model [25], which allows to
take the minimum and maximum particle sizes (dmin and dmax) into account. Recently, this
model was modified by Fruhstorfer [26] to

CPFTmod-DF(d) = 100% ·
dn(d) − dn(d)

min

dn(d)
max − dn(d)

min

(1)

using the particle-size dependent distribution modulus

n(d) = nmin + d · nmax − nmin

dmax
, (2)

where nmin and nmax are the minimum and the maximum distribution modulus, respec-
tively. The flowability of a castable can be related to its particle distribution and hence, nmin
and nmax can be used as parameters to describe a chosen material mixture. In case of tabular
alumina with a maximum particle size of 3150 µm, best properties in terms of flowability,
density and pore sizes of the castable were found for nmin = 0.28 and nmax = 0.8 [27].

The synthesised niobium-alumina aggregates were wet mixed with the hydratable
alumina binder Alphabond 300 and the reactive alumina CL370 (Almatis, Ludwigshafen,
Germany) according to the recipe as discussed in Section 3.3 using a concrete laboratory
mixer (ToniMAX, Toni Baustoffprüfsysteme GmbH, Berlin, Germany). The coarse-grained
mixture was then casted into the prismatic molds, set, dried and sintered following the
same procedure as the preliminary, fine-grained material. The sintered castable samples
will be referred to as coarse-grained composite hereinafter.

2.3. General Sample Characterisation

The fine-grained as well as the coarse-grained composites (four prisms each) were
characterised in terms of shrinkage, envelope density and open porosity according to
DIN EN 993-1:2019-03; elastic constants according to DIN EN 843-2:2006 by the ultrasonic
procedure (UKS-D device, GEOTRON-ELEKTRONIK, Pirna, Germany).

The cold modulus of rupture (MOR) of the fine-grained composite (two prisms) and
the coarse-grained composites (three prisms) was determined using an universal testing
machine TIRAtest 28100 (TIRA GmbH, Schalkau, Germany). In order to achieve a uniform
distribution of bending moment, four point bending setup with a support span of 125 mm,
a load span of 62.5 mm, a pre-load of 20 N and a loading-rate of 150 N/s was applied.

On cut slices, the interior microstructure and phase assemblage of the prisms were
studied by scanning electron microscopy (SEM) using back-scattered electron (BSE) and
secondary electron (SE) contrast together with energy dispersive X-ray spectroscopy (EDS)
(Philips XL30 ESEM FEG, Amsterdam, the Netherlands). Some cut slices were also crushed
and powdered using an agate mortar and analysed by XRD/Rietveld refinement.

2.3.1. CT Measurements

The macrostructure of the composite material was analysed using a microfocus X-
ray tomograph CT-ALPHA (ProCon X-ray GmbH, Sarstedt, Germany) equipped with a
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transmission X-ray tube FXE-160.20/25 (Feinfocus, Garbsen, Germany) and a flat panel
X-ray detector Dexela 1512 (Perkin Elmer, Rodgau, Germany).

The µ-CT was operated at 150 kV and 120 µA using a 0.6 mm copper filter. The expo-
sure time was set to 2 s. The volume data were reconstructed by means of the software
Volex 6.0 (Fraunhofer EZRT, Fürth, Germany) with a voxel size of 9.8 µm. The reconstructed
volume data were visualised using the software VG Studio MAX 2.2 (Volume Graphics,
Heidelberg, Germany) and quantified with the software MAVI 1.5.3 (Fraunhofer ITWM,
Kaiserslautern, Germany). The image processing comprised a cropping step in order to
cut out a defined volume of the reconstructed data (350 × 350 × 1050 voxels) followed by a
segmentation step in order to transform the grey scale into binary image. The binarisation
was performed using Otsu´s method [28] being based on a global thresholding strategy.
Subsequently, the field features (volume density and total porosity) were determined.

2.3.2. High-Temperature Compressive Strength Measurements

Quasi-static compression tests were performed on both, fine-grained and coarse-
grained composites (one specimen each). The cylindrical specimens with 12 mm in diameter
and 20 mm in height were drilled from sintered prisms. The compression tests were
conducted at an initial strain rate of 7.5 × 10−4 1/s at 1300 °C up to a possible maximum
strain of 30% using an electro-mechanical, high-temperature testing machine (Z020, Zwick
Roell, Haan, Germany) with a protective argon gas chamber (Maytec, Olching, Germany)
integrated into the testing machine. To prevent the oxidation of the specimens, the test
chamber was evacuated to 0.8 mbar vacuum and then filled with argon twice. Thus,
the tests were performed under argon atmosphere and ambient pressure. The presence of
oxygen was controlled by an oxygen sensor (Stange Elektronik, Gummersbach, Germany).

Before the tests, the lower piston was moved upwards with a speed of 0.1 mm/min to
apply a pre-load of 5 N to the specimens. The heating of the specimens was carried out
inductively via a medium-frequency induction generator HF 5010 (TRUMPF Hüttinger,
Ditzingen, Germany) with a heating rate of 30 K/s and a water-cooled copper coil. The tem-
perature was detected by a pyrometer Metis MS09 (Sensortherm GmbH, Steinbach/Ts,
Germany) with a wavelength of 0.9 µm and an emission coefficient of 0.93. In case of the
coarse-grained composite, a metallic susceptor made of Mo-alloy TZM was used, since
the material could not be heated by induction. The specimens were kept 20 min under
the pre-load after reaching the test temperature to achieve a homogeneous temperature
field over the entire height of the specimens. More details of the test procedure were given
elsewhere [19].

2.3.3. Electrical Conductivity Measurements

Two samples for electrical conductivity measurements were prepared as follows. First
a powder mixture of 65 vol.% niobium and 35 vol.% alumina (calcinated alumina CT9FG,
Almatis, Ludwigshafen, Germany) was dry mixed and homogenised, pressed to cylinders
and finally sintered under argon atmosphere at a temperature of 1600 °C for 4 h.

To remove the formed sinter skins and to create a plane surface, the circular faces
of the samples were grinded using SiC paper (P400 and P600). Then the surfaces were
sputter-coated with gold, using a Quorum Q150T ES (Quantum Design GmbH, Darmstadt,
Germany). Due to surface roughness, the circular faces were coated with a layer of
silver paste to ensure that the whole surface area of the sample was connected by one
continuous electrode.

The investigations were performed using a four-point-measurement setup, which is
schematically shown in Figure 1. During the tests, currents of 1 mA, 10 mA and 100 mA
were applied to the samples working with a Keithley 220 Programmable Current Source
(Keithley Instruments, Cleveland, OH, USA) and the resulting voltages were measured us-
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ing a Keithley 2000 Multimeter (Keithley Instruments, Cleveland, OH, USA). The resistance
R of the samples was calculated with

R =
U
I

, (3)

where I is the applied current and U is the resulting voltage [29]. The specific resistance ρ
was calculated according to

ρ =
R · A

l
(4)

where A is the surface area of the prepared electrode and l the distance between the
prepared sample surfaces.

Figure 1. Schematic illustration of electrical conductivity measurement setup.

3. Results and Discussion
3.1. Fine-Grained Composite

SEM micrographs of the sintered fine-grained composite can be seen in Figure 2.
The niobium particles are homogeneously distributed within a fine-grained matrix of
alumina (Figure 2a). Pores with a diameter up to ≈ 100 µm were only randomly dis-
tributed within the sample volume and, therefore, less visible in the presented micrographs.
The impurity phase NbO identified by EDS measurements was frequently present within
niobium particles as it is shown in Figure 2b. Ternary oxide formation, e.g., of AlNbO4 as
reported in [19], at the interface alumina/niobium oxide was not detected by SEM/EDS.
Furthermore, the niobium material showed only a less pronounced tendency for surface
diffusion along the alumina grains in comparison to the previous case of a mixture with a
tabular alumina material [18].

200 µm

pore

Nb

Al2O3

fine-grained

(a)

20 µm

Nb

fine-grained

NbO

Al2O3

Nb

Nb

Nb

Nb

(b)

Figure 2. SEM micrographs of the fine-grained composite (a) SE contrast, overview and in detail (b) BSE contrast, NbO
impurity within Nb grains surrounded by a finer grained alumina matrix.
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3.2. Synthesised Composite Aggregates
3.2.1. Morphology and Particle Size Distributions

Photographs of the aggregate fractions 500–1000 µm and 1000–3150 µm are presented
in Figure 3. The crushing process produced mainly plate-like shaped particles. The particle
height is much smaller than the length and width. Quantitatively spoken, the ratio of
height to the maximal length is approximately 0.5–0.7. Within this overall morphology,
two types can be distinguished. First, roughly two third of the particles approximate an
imaginary plate where a relatively flat plateau in height-direction was formed. For the
other one third of particles, a more or less pronounced maximum peak can be observed.
These two shape categories are exemplary illustrated in Figure 4 determined on particles
from the 1000–3150 µm aggregate fraction.

The characteristic particle sizes d10, d50 and d90 of the synthesised composite aggre-
gates measureable with laser granulometry are listed in Table 3. A continuous uniform
particle size distribution was assumed for the aggregate class 1000–3150 µm.

500-1000 µm

5000 µm

(a)

1000-3150 µm

5000 µm

(b)

Figure 3. Photographs of the synthesised aggregate fractions (a) 500–1000 µm and (b) 1000–3150 µm.

0 µm 1000 2000
0

1000

2000

0

200

400

600

800

1000

1164.48 µm

(a)

0 µm 1000 2000

1000

2000

0

0

200

400

600

800

1000

1200

1416.65 µm

(b)

Figure 4. Height maps of particles from the aggregate fraction 1000–3150 µm determined with laser-scanning microscopy
showing two types of plate-like particle morphologies: (a) relatively flat surface plane and (b) a more or less pronounced
maximum in the vertical direction.
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Table 3. Characteristic particle sizes of three synthesised composite aggregate classes measureable
by laser granulometry.

Aggregate Particle Size in µm

Class d10 d50 d90

0–45 µm 0.2 11.7 50.4
45–500 µm 1.5 83.6 324.6

500–1000 µm 199.7 461.2 701.4

3.2.2. Density and Porosity

The envelope density of the fine-grained composite was determined with the Archimedes
principle to 5.66 g/cm3 including 18% open porosity. A skeleton density of 6.73 g/cm3 was
determined with mercury intrusion porosimetry (MIP) resulting in an envelope (bulk)
density of 5.78 g/cm3 and hence an (open) porosity of 16.5% as presented in Table 4. The total
porosity of the fine-grained composite was estimated based on the CT image as shown
in Figure 5 to 32.60%, which gives an estimated closed porosity in the range of 10–15%.
However, the estimated porosity must be interpreted with caution. There are several
constraints affecting the quantitative CT analysis. Due to the limited resolution, e.g., recon-
structed voxel size, pores smaller than approximately 20 µm were unevitably neglected.
Furthermore, uneven thickness of the scanned sample resulted in an irregular grey value
distribution along the width of the sample, as it can be seen in Figure 5. Therefore, the image
processing, particulary the binarisation step, is a subject of errors.

Table 4. Determined values of envelope density ρb and open porosity πa according to DIN EN
993-1:2019-03, the skeleton density ρS and porosity ε according to DIN ISO 15901-1:2019-03, and the
true density ρF according to DIN 66137-2:2019-03 of the synthesised aggregates as well as the sintered
fine-grained and coarse-grained composites. If applicable, values are given as mean value ± standard
deviation (number of samples n = 4).

Archimedes MIP He XRD

ρb πa ρS ε ρb ρF ρ
in g/cm3 in % in g/cm3 in % in g/cm3 in g/cm3 in g/cm3

fine-grained
composite

5.66 ±
0.05

18.0 ±
0.7 6.73 16.48 5.78

aggregate fraction
0–45 µm 5.899

45–500 µm 7.068 6.886
500–1000 µm 6.917 6.641
1000–3150 µm 6.88 15.83 5.79 6.918 6.661

coarse-grained
composite

4.57 ±
0.04

30.4 ±
0.3 6.49 25.55 5.17
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Figure 5. CT image of the fine-grained composite showing inhomogeneously distributed pores with
a diameter larger than 100 µm.

3.2.3. XRD Analysis

Detailed results of the Rietveld refinement of the aggregate fractions are listed in
Table 5. The crushing procedure of the sintered fine-grained composite induced phase
separation resulting in alumina enrichment in the finest aggregate fraction 0–45 µm and
niobium enrichment in the aggregate fraction of 45–500 µm. For the aggregate fractions
larger than 500 µm, the volume ratio of niobium to corundum is around 55:40, whereas for
the aggregate fractions 0–45 µm and 45–500 µm this ratio is 40:57 and 60:35, respectively.
Phase separation due to crushing is also confirmed by the results of the density measure-
ments using helium pycnometry as given in Table 4. The largest density was determined
for the 45–500 µm aggregate fraction, which is in good agreement with the calculated true
densities based on the XRD results. However, the true densities determined by helium
pycnometry are 2.5–4% larger than the calculated ones, which reflects the error of the
quantitative phase analysis.

In all fractions, the impurity phases β-Nb2C [30] (adopted from #ICSD 33575) and
NbO [31] (#ICSD 27574) were detected each with an amount between ≈1–2 vol.%. It was
found that the volume content Vimpurity of NbO and β-Nb2C in each aggregate fraction is
linearly depending on the corresponding niobium content VNb, which can be described by

Vimpurity = fimpurity · VNb . (5)

For NbO and β-Nb2C, the factors fNbO and fβ-Nb2C were obtained by least-square
fitting to 0.0368 and 0.0369, respectively, resulting in fNbO+β-Nb2C of 0.0737. Such linear
dependency means that the grains of NbO and β-Nb2C are always connected to the niobium
crystals. Crushing did not result in a separation of the formed Nb-based impurities from
the niobium raw material.

As an example, the result of the XRD measurement and the Rietveld refinement of the
aggregate fraction 1000–3150 µm can be seen in Figure 6a. The niobium-related reflections
were described using two niobium phases each with a different UVW profile and lattice
parameter. For the 1000–3150 µm aggregate fraction, lattice parameter of a = 3.31377 Å
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and a = 3.30858 Å were obtained for the phases marked as ’Niobium-1’ and ’Niobium-2’
in Figure 6, respectively. Using two niobium phases during Rietveld refinement led to
a large drop in the resulting weighted profile R-values Rwp in comparison to using only
one phase. For a detailed view, the refinement result of the niobium (132) reflection
is shown in Figure 6b. The calculated profiles of the two niobium phases are different,
which can be related to a difference in crystallite size. Our material has at least two
different morphologies of metal grains. One are the particles of the raw material, which are
connected to NbO particles as shown in Figure 2b. The second type of metal grains are the
ones that originate from diffusion along the surface of the corundum particles (compare
also with the reported microstructures in [18]). The difference in the lattice parameter of
the two niobium phases can be related to a different chemistry. It can be assumed that the
niobium diffused along the corundum grains has a larger amount of dissolved impurity
elements (such as O, K, Na) in comparison to the relatively large particles of the niobium
raw material. However, it should be mentioned that no differences in chemistry were
observed by SEM/EDS measurements. Most likely such differences are below the detection
limit of the EDS method. The spread of lattice parameters could be also explained by the
presence of residual stress in niobium caused by the crushing process.

Figure 7 shows the determined lattice parameters of the phases Niobium-1 and
Niobium-2 for all synthesised aggregate fractions. The dependence of the lattice parameter
of Niobium-1 on the particle size shows a pronounced maximum for the aggregate fraction
45–500 µm. Contrarily, the lattice parameter of Niobium-2 reveal an opposite tendency with
a minimum for the aggregate fraction 45–500 µm. It can be assumed that the chemically
inhomogeneous niobium entails local differences in hardness and toughness leading to the
observed phase separation during crushing.

Table 5. Results of the Rietveld refinement of the four aggregate fractions 0–45 µm, 45–500 µm, 500–1000 µm and
1000–3150 µm. The overall fit quality of the Rietveld refinement can be judged with the presented weighted profile R-
values Rwp.

Aggregate Fraction Phase (Amount in mass/vol.%) Remarks
Lattice Parameter in Å

0–45 µm Nb-1 (28.8/20.0) α-Al2O3 (38.8/57.3) β-Nb2C (2.1/1.5) Rwp = 7.22
a = 3.31178 a = 4.75892 a = 5.36096

c = 12.99214 c = 4.96013 39.9 vol.% Nb
Nb-2 (28.8/19.9) NbO (1.6/1.3)

a = 3.31045 a = 4.21061

45–500 µm Nb-1 (33.1/26.9) α-Al2O3 (20.3/35.0) β-Nb2C (2.6/2.2) Rwp = 7.84
a = 3.31575 a = 4.75862 a = 5.36064

c = 12.9912 c = 4.9614 60.3 vol.% Nb
Nb-2 (41.4/33.4) NbO (2.6/2.4)

a = 3.30833 a = 4.2103

500–1000 µm Nb-1 (28.3/22.1) α-Al2O3 (24.7/40.9) β-Nb2C (2.5/2.1) Rwp = 7.00
a = 3.31557 a = 4.75885 a = 5.36271

c = 12.99186 c = 4.96004 55.0 vol.% Nb
Nb-2 (42.3/32.9) NbO (2.2/2.0)

a = 3.30913 a = 4.21104

1000–3150 µm Nb-1 (37.6/29.5) α-Al2O3 (24.1/40.2) β-Nb2C (2.4/2.0) Rwp = 7.49
a = 3.31377 a = 4.75866 a = 5.36314

c = 12.99121 c = 4.95887 55.8 vol.% Nb
Nb-2 (33.7/26.3) NbO (2.2/2.0)

a = 3.30858 a = 4.21097
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Figure 6. Results of XRD measurement and Rietveld refinement of the 1000–3150 µm aggregate
fraction. (a) Determined diffraction pattern and calculated positions of each phase reflections
between 15 and 140° 2θ and (b) enlarged view showing the calculated intensities of the niobium (132)
reflection.
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Figure 7. Lattice parameters of the two niobium phases used for Rietveld refinement obtained for all
synthesised aggregate fractions.

3.3. Coarse-Grained Castable Recipe

Using nmin = 0.28 and nmax = 0.8 in Equation (1) as mentioned in Section 2.2,
a volume ratio of the aggregate classes 0–45 µm:45–500 µm:500–1000 µm:1000–3150 µm of
27.6:23.2:9.05:40.1, which is 0.69:0.58:0.23:1 normalised to the largest aggregate class, should
be utilised in the castable mixture.

The amount of raw material was a strongly limiting factor for obtaining the intended
volume ratios of the synthesised aggregate fractions. Nevertheless, the actual yields of the
single aggregate fractions during the crushing procedure did not satisfy the requirements
on the adequate volume amounts. Therefore, it was necessary to adjust the volume ratio
of the aggregate classes. Finally, a mass ratio of 5.7:33.6:28.2:32.5 of the aggregate classes
0–45 µm:45–500 µm:500–1000 µm:1000–3150 µm was approved for producing the coarse-
grained castable. Using the above discussed densities of the synthesised aggregate fractions,
a normalised volume ratio of 0.18:1.03:0.87:1 of the aggregate fractions was realised.

For the castable mixture, approximately 15 vol.% of alumina-based fines and binder
were additionally added to the synthesised aggregates. The castable component’s particle
size distributions are shown in Figure 8 according to the derived recipe (see Table 6).
Finally, the normalised volume ratio of the castable mixture was 0.95:1.23:0.43:1, resulting
in an increased amount of particles of the aggregate classes 45–500 µm and 500–1000 µm
in comparison to the optimal values shown above. The particle distribution of the coarse-
grained composite is characterised by Equation (1) using dmin = 0.01 µm, dmax = 3150 µm
with nmin = 0.2716(30) and nmax = 0.295(24).
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Figure 8. (a) Determined particle size distributions of the used castable components as they contribute to the castable’s
particle size distribution (calculated sum distribution); (b) CPFT of the particles of the coarse-grained castable together with
the results of the fit using the modified Dinger-Funk distribution model (see Equation (1)).

Table 6. Coarse-grained castable recipe.

Material Density mass Amount

in g/cm3 in g in mass-% in vol.%

0–45 µm 5.79 89.98 5.18 4.92
45–500 µm 5.79 533.02 30.69 29.12

500–1000 µm 5.79 447.5 25.77 24.45
1000–3150 µm 5.79 514.97 29.65 28.14

CL370 (alumina) 4.013 110.0 6.33 8.67
Alphabond300 (binder) 2.781 41.38 2.38 4.71

water 1 120 6.46 27.52

3.4. Coarse-Grained Composite

SEM micrographs of the sintered coarse-grained composite are shown in Figures 9 and 10.
In comparison to the sintered fine-grained composites (Figure 2), the niobium particles are
inhomogenuously distributed as the niobium-rich pre-sintered coarse-grained particles
are now embedded within an alumina-rich matrix based on CL370 and the de-hydrated
Alphabond300 binder as it can be seen in Figure 9. In addition, large pores with a few
hundred micrometers in diameter were observed regularly within the microstructure
(Figure 9a). In Figure 9b, the indicated particle boundaries of the pre-synthesised aggre-
gates are drawn for more clarity. However, the phase assemblage of the niobium particles
did not change during the second sintering process in comparison to the sintered fine-
grained composite. Still, niobium oxide is present within some of the niobium particles
without any SEM/EDS-detectable chemical reaction with alumina (see Figure 10).
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Figure 9. SEM micrograph (BSE contrast) of the coarse-grained composite with niobium (light grey) and alumina (dark
grey). (a) overview with pores up to a few hundreds micrometers size, (b) the same micrograph with indicated particle
boundaries of the pre-sintered aggregates.

coarse-grained

20 µm

Nb
NbO

Al2O3

Figure 10. SEM micrograph in BSE contrast showing similar phase assemblage as the fine-grained
composite with niobium particles containing niobium oxide impurity within a fine-grained alu-
mina matrix.

The envelope density of the coarse-grained composites was determined to 4.57 g/cm3

with 30.4% open porosity, whereas MIP measurements on fragments of the coarse-grained
prisms give an envelope (bulk) density of 5.17 g/cm3 including 25.6% (open) porosity. These
differences can indicate surface effects. However, both measurements point up that the
coarse-grained composite exhibit a lower density than the fine-grained one (see Table 4).

3.5. Comparison of Mechanical Properties and Elastic Constants of the Fine- and
Coarse-Grained Composites

The determined shrinkage of the sintered fine-grained composite is 4.27 ± 0.42%
whereas the coarse-grained composite evinces a significant reduced shrinkage values of
1.61 ± 0.13%.

The determined values of Young’s modulus E, shear modulus G and Poisson’s ratio
ν of the fine-grained and the coarse-grained composites are listed in Table 7. The Young’s
modulus of the coarse-grained composite is only ≈50% of the fine-grained one, whereas the
shear modulus and Poisson’s ratio dropped by roughly one third. It can be assumed that
the relatively low elastic constants originate from the high porosity of the coarse-grained
composite. As it is shown in Table 4, the determined open porosity increased from 18 to
20% in case of the fine-grained composite to 25–30% for the coarse-grained samples.

The four-point bending strength also decreased from 52 MPa to 11 MPa comparing the
fine- and coarse-grained composites (see Table 7). The fine-grained composite has a similar
strength as a formerly produced fine-grained niobium-alumina composite containing
11 vol.% metal [18].
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Table 7. Determined values of the elastic constants Young’s modulus E, shear modulus G and
Poisson’s ratio ν and the four-point bending strength σ of the sintered fine-grained and coarse-
grained composites given as mean value ± standard deviation.

Elastic Constants MOR

E in GPa G in GPa ν σ in MPa

fine-grained 97.8 ± 5.0 38.0 ± 2.1 0.287 ± 0.014 52.0 ± 7.0
coarse-grained 46.0 ± 1.8 24.5 ± 2.2 0.185 ± 0.021 11.3 ± 0.4

3.6. High-Temperature Compressive Strength

Figure 11a shows the high-temperature compressive behaviour of fine-grained and
coarse-grained composite materials at 1300 °C. The fine-grained composite has a signifi-
cantly higher strength compared to coarse-grained composite with a compressive yield
strength of 49 MPa, while the coarse-grained specimen achieved 18 MPa only. In addition,
pronounced plastic deformation occurred in the fine-grained composite, as it is visible
from Figure 11b. After reaching 10% of strain, the stress on the fine-grained composite
slightly increased due to strain hardening within the material. Furthermore, the effective
cross-section of the sample was increased. The specimen was then compressed well up
to 30% of strain. On the other hand, the coarse-grained composite showed more brittle
behaviour with limited plasticity and failed after approximately 4–5% of strain.

Figure 11b compares the appearence of the specimens before and after the tests. As it
can be seen, some cracks occurred on the fine-grained specimen during the test, however,
in spite of these cracks, the specimen showed good plastic behaviour and did not fail.
The coarse-grained composite showed fracture to larger fragments as it is clearly visible in
Figure 11b. Thus, the specimen showed limited plasticity and more brittle behaviour and
the specimen failed. The presence of higher porosity is considered to be the fundamental
reason for the brittle behaviour.
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Figure 11. (a) Results of compression tests at a temperature of 1300 °C performed on the fine-grained
and coarse-grained composites and (b) photographs of the corresponding specimens before and after
the tests.

3.7. Electrical Conductivity

Two samples were produced with a density of 5.3 g/cm3 and 5.2 g/cm3, and a deter-
mined electrical conductivity of 40.58 S/cm and 59.14 S/cm, respectively. The high electrical
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conductivity is caused by the formation of a conducting network of the metallic component
through the composite material. According to [32], the specific electrical resistance of
pure niobium is in the range of 1.46 · 10−5 − 1.70 · 10−5

Ω · cm, resulting in an electrical
conductivity in the range of 68.49–58.82 kS/cm. A comparison of these values with the
results of the investigated niobium-alumina composites shows a decrease of the electrical
conductivity in the order of three magnitudes.

The lower electrical conductivity is caused by the composition of the material, made
from 65 vol.% electrically conductive niobium and 35 vol.% isolating alumina. Furthermore,
the sample density has to be considered, since the samples exhibited a geometric density of
about 75 % theoretical density. The influence of porosity on electrical conductivity has been
studied elsewhere and is reported to decrease with increasing porosity [33–35].

4. Conclusions

Niobium-alumina aggregates were successfully synthesised and their application in
coarse-grained refractory castables was demonstrated. It was found that the crushing
process of the fine-grained 65/35 vol.% niobium-alumina composite induced phase separa-
tion resulting in niobium contents between 40 and 60 vol.%, depending on the aggregate
class. The porosity of the fine-grained composite might play a role here as well as the
amount of diffusion of the niobium along the grain boundaries of the alumina material.
Such interactions must be understood in more detail for a better designing of refractory
composite aggregates and the related coarse-grained castables.

Obviously, the physical properties and composition of the aggregates are depending on
the aggregate fractions, i.e., on the aggregate size. In addition, the particle morphology and
the porosity of the aggregates play an important role in packing density, and water demand
for self-flowability of the castable mixture. It was shown that the particle morphology
variety can not be ignored. Therefore, a systematic analysis of particle morphologies should
be part of further works.

A relatively high water content of almost 30 vol.% was necessary for achieving a
vibration-assisted flowability of the fine- and coarse-grained castables. Therefore, the poros-
ity of the coarse-grained composite increased due to aggregate properties (roughness,
relatively high open porosity) in comparison to the fine-grained composite, which is
also reflected by lower values of elastic constants and mechanical strength. However,
a strain value of almost 5% was achieved for the coarse-grained composite in compression
at a temperature of 1300 °C demonstrating good thermal shock properties in refractory
ceramic applications.

For the coarse-grained composite, shrinkage of 1.6% was determined after sintering.
In combination with the high metal content, the material can be used to produce large
components without the risk of shrinkage cracks on sintering.

The electrical conductivity of the refractory composite strongly depends on chemistry
and porosity. The investigated pressed and sintered fine-grained composites had a similar
porosity as the casted ones. Thus, the values of electrical conductivity should be in the same
order of magnitude for the two materials. With 40–60 S/cm, the electrical conductivity of
our fine-grained composite is only one magnitude below the one of silicon carbide [36] but
fifteen magnitudes above the electrical conductivity of pure alumina [37]. Thus, the (coarse-
grained) material is a candidate for high-temperature heating elements or for refractory
linings with voltage-controlled metal melt wetting. For such a purpose, the composite must
be used under protective atmosphere or the surface must be coated, e.g., with alumina,
for oxidation resistance. In further works, the electrical conductivity of the refractory
composite should be investigated on densely sintered samples to study the influence of
chemistry as well as on samples containing different levels of closed and open porosity.

Mechanical and functional properties of coarse-grained refractory composite are
mainly depending on the properties of the used aggregates. Despite the presented splintery-
shaped particles produced by crushing, circular-shaped, porous aggregates based on
alginate gelation [38] or almost dense particles based on pelletising can improve thermo-
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mechanical properties of coarse-grained refractory composites. It is a challenging task
to find the best-fitting material solution for high temperature application simultaneously
offering a good thermal-shock behaviour and sufficient mechanical properties [39]. By
assembling of pre-synthesised dense and porous aggregates in different size-dependent
volume ratios in a castable offset could be a promising way to achieve this objective,
particularly for large refractory components.
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