15 research outputs found

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson's Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts.

    Get PDF
    OBJECTIVE: To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression. METHODS: We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed. RESULTS: We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69-6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04-20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16-1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19-2.31] for the C allele of rs114138760). Age at onset was associated with TMEM175 variant p.M393T (-0.72 [-1.21 to -0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27-1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21-1.03]). CONCLUSIONS: This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.The Intramural Research Program the National Institute on Aging (NIA, Z01-AG000949-02), Biogen Idec, and the Michael J Fox Foundation for Parkinson’s Researc

    Differences in the Presentation and Progression of Parkinson's Disease by Sex.

    Get PDF
    BACKGROUND: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. OBJECTIVES: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. METHODS: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. RESULTS: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. CONCLUSIONS: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management. © 2020 International Parkinson and Movement Disorder Society.This study was supported by the Intramural Research Program the National Institute on Aging (NIA, Z01-AG000949-02), Biogen Idec, and the Michael J Fox Foundation for Parkinson’s Research

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia.This research is supported by the Aligning Science Across Parkinson’s Initiative, the Intramural Research Program, National Institute on Aging, National Institutes of Health, Department of Health and Human Services, project ZO1 AG000949, and the Michael J. Fox Foundation for Parkinson’s Research. Data used in the preparation of this article were obtained from Global Parkinson’s Genetics Program (GP2). GP2 is funded by the Aligning Science Across Parkinson’s (ASAP) initiative and implemented by The Michael J. Fox Foundation for Parkinson’s Research (https://gp2.org). For a complete list of GP2 members see https://gp2.org.Peer reviewe

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Genetic Variants Associated with Longitudinal Cognitive Performance in Older Breast Cancer Patients and Controls

    No full text
    Background: There have been no published genome-wide studies of the genetics of cancer- and treatment-related cognitive decline (CRCD); the purpose of this study is to identify genetic variants associated with CRCD in older female breast cancer survivors. Methods: Analyses included white non-Hispanic women with non-metastatic breast cancer aged 60+ (N = 325) and age-, racial/ethnic group-, and education-matched controls (N = 340) with pre-systemic treatment and one-year follow-up cognitive assessment. CRCD was evaluated using longitudinal domain scores on cognitive tests of attention, processing speed, and executive function (APE), and learning and memory (LM). Linear regression models of one-year cognition included an interaction term for SNP or gene SNP enrichment*cancer case/control status, controlling for demographic variables and baseline cognition. Results: Cancer patients carrying minor alleles for two SNPs, rs76859653 (chromosome 1) in the hemicentin 1 (HMCN1) gene (p = 1.624 × 10-8), and rs78786199 (chromosome 2, p = 1.925 × 10-8) in an intergenic region had lower one-year APE scores than non-carriers and controls. Gene-level analyses showed the POC5 centriolar protein gene was enriched for SNPs associated with differences in longitudinal LM performance between patients and controls. Conclusions: The SNPs associated with cognition in survivors, but not controls, were members of the cyclic nucleotide phosphodiesterase family, that play important roles in cell signaling, cancer risk, and neurodegeneration. These findings provide preliminary evidence that novel genetic loci may contribute to susceptibility to CRCD

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    Abstract The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Genetic risk of Parkinson disease and progression: An analysis of 13 longitudinal cohorts

    No full text
    Objective: To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression. Methods: We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed. Results: We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p.N370S: hazard ratio [HR] 3.28 [1.69–6.34]) and possible REM sleep behavior (p.T408M: odds ratio 6.48 [2.04–20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRRK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16–1.52] for the C allele of rs76904798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19–2.31] for the C allele of rs114138760). Age at onset was associated with TMEM175 variant p.M393T (−0.72 [−1.21 to −0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27–1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21–1.03]). Conclusions: This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials

    GWAS of Parkinson’s disease clinical biomarkers in 12 longitudinal patients’ cohorts

    Get PDF
    BACKGROUND: Several reports have identified different patterns of Parkinson's disease progression in individuals carrying missense variants in GBA or LRRK2 genes. The overall contribution of genetic factors to the severity and progression of Parkinson's disease, however, has not been well studied. OBJECTIVES: To test the association between genetic variants and the clinical features of Parkinson's disease on a genomewide scale. METHODS: We accumulated individual data from 12 longitudinal cohorts in a total of 4093 patients with 22,307 observations for a median of 3.81 years. Genomewide associations were evaluated for 25 cross-sectional and longitudinal phenotypes. Specific variants of interest, including 90 recently identified disease-risk variants, were also investigated post hoc for candidate associations with these phenotypes. RESULTS: Two variants were genomewide significant. Rs382940(T>A), within the intron of SLC44A1, was associated with reaching Hoehn and Yahr stage 3 or higher faster (hazard ratio 2.04 [1.58-2.62]; P value = 3.46E-8). Rs61863020(G>A), an intergenic variant and expression quantitative trait loci for α-2A adrenergic receptor, was associated with a lower prevalence of insomnia at baseline (odds ratio 0.63 [0.52-0.75]; P value = 4.74E-8). In the targeted analysis, we found 9 associations between known Parkinson's risk variants and more severe motor/cognitive symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and an APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in patients. CONCLUSIONS: We identified novel genetic factors associated with heterogeneity of Parkinson's disease. The results can be used for validation or hypothesis tests regarding Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society
    corecore