40 research outputs found

    Kiloparsec-Scale Jets in FR I Radio Galaxies and the Gamma-Ray Background

    Full text link
    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse gamma-ray background radiation. The analyzed gamma-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 muG in the brightest knots of these jets), can contribute about one percent to the extragalactic gamma-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 muG on average, as otherwise the extragalactic gamma-ray background would be overproduced.Comment: 18 pages, 3 figures included. ApJ accepte

    Is the EGRET source 3EG J1621+8203 the radio galaxy NGC 6251?

    Full text link
    We discuss the nature of the unidentified EGRET source 3EG J1621+8203. In an effort to identify the gamma-ray source, we have examined X-ray images of the field from ROSAT PSPC, ROSAT HRI, and ASCA GIS. Of the several faint X-ray point sources in the error circle of 3EG J1621+8203, most are stars or faint radio sources, unlikely to be counterparts to the EGRET source. The most notable object in the gamma-ray error box is the bright FR I radio galaxy NGC 6251. If 3EG J1621+8203 corresponds to NGC 6251, then it would be the second radio galaxy to be detected in high energy gamma rays, after Cen A, which provided the first clear evidence of the detection above 100 MeV of an AGN with a large-inclination jet. If the detection of more radio galaxies by EGRET has been limited by its threshold sensitivity, there exists the exciting possibility that new high energy gamma-ray instruments, with much higher sensitivity, will detect a larger number of radio galaxies in the future.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical Journal, August 2002 issu

    The James Clerk Maxwell Telescope Spectral Legacy Survey

    Get PDF
    Original article can be found at: http://www.journals.uchicago.edu/loi/pasp Copyright University of Chicago Press / AAS. DOI: 10.1086/511161Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes that can reveal the dynamics, physics, chemistry, and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the James Clerk Maxwell Telescope (JCMT) Board of Directors. Beginning in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 and 373 GHz) toward a sample of five sources. Our intended targets are a low-mass core (NGC 1333 IRAS 4), three high-mass cores spanning a range of star-forming environments and evolutionary states (W49, AFGL 2591, and IRAS 20126), and a photodissociation region (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS (Heterodyne Array Receiver Programme B/Auto- Correlation Spectrometer and Imaging System) to study the molecular inventory and the physical structure of these objects, which span different evolutionary stages and physical environments and to probe their evolution during the star formation process. As its name suggests, the SLS will provide a lasting data legacy from the JCMT that is intended to benefit the entire astronomical community. As such, the entire data set (including calibrated spectral data cubes, maps of molecular emission, line identifications, and calculations of the gas temperature and column density) will be publicly available.Peer reviewe

    The Case for a Low Extragalactic Gamma-ray Background

    Full text link
    Measurements of the diffuse extragalactic gamma-ray background (EGRB) are complicated by a strong Galactic foreground. Estimates of the EGRB flux and spectrum, obtained by modeling the Galactic emission, have produced a variety of (sometimes conflicting) results. The latest analysis of the EGRET data found an isotropic flux I_x=1.45+-0.05 above 100 MeV, in units of 10^-5 s^-1 cm^-2 sr^-1. We analyze the EGRET data in search for robust constraints on the EGRB flux, finding the gamma-ray sky strongly dominated by Galactic foreground even at high latitudes, with no conclusive evidence for an additional isotropic component. The gamma-ray intensity measured towards the Galactic poles is similar to or lower than previous estimates of I_x. The high latitude profile of the gamma-ray data is disk-like for 40<|b[deg]|<70, and even steeper for |b|>70; overall it exhibits strong Galactic features and is well fit by a simple Galactic model. Based on the |b|>40 data we find that I_x<0.5 at a 99% confidence level, with evidence for a much lower flux. We show that correlations with Galactic tracers, previously used to identify the Galactic foreground and estimate I_x, are not satisfactory; the results depend on the tracers used and on the part of the sky examined, because the Galactic emission is not linear in the Galactic tracers and exhibits spectral variations across the sky. The low EGRB flux favored by our analysis places stringent limits on extragalactic scenarios involving gamma-ray emission, such as radiation from blazars, intergalactic shocks and production of ultra-high energy cosmic rays and neutrinos. We suggest methods by which future gamma-ray missions such as GLAST and AGILE could indirectly identify the EGRB.Comment: Accepted for publication in JCAP. Increased sizes of polar regions examined, and added discussion of spectral data. Results unchange

    An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    Get PDF
    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) Survey will observe 500 nearby main sequence and sub-giant stars (100 of each of the A, F, G, K and M spectral classes) to the 850 micron extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25 and 45 pc for M, K, G, F and A stars, respectively, and all targets lie between the declinations of -40 deg to 80 deg. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type or age. This will be the first unbiased survey for debris disks since IRAS. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. A substantial amount of complementary data will be required to constrain the temperatures and masses of discovered disks. High resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories to characterize their physical properties. For non-detected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (approximately 2 pc).Comment: 11 pages, 7 figures (3 color), accepted by the Publications of the Astronomical Society of the Pacifi

    An unbiased survey of 500 nearby stars for debris disks: A JCMT legacy program

    Get PDF
    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA‐2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main‐sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral classes) to the 850 μm extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25, and 45 pc for M, K, G, F, and A stars, respectively, and all targets lie between the declinations of −40° to 80°. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type, or age. The survey will commence in late 2007 and will be executed over 390 hr, reaching 90% completion within 2 years. This will be the first unbiased survey for debris disks since the Infrared Astronomical Satellite. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. To fully exploit the order of magnitude increase in debris disks detected in the submillimeter, a substantial amount of complementary data will be required, especially at shorter wavelengths, to constrain the temperatures and masses of discovered disks. High‐resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories, including Herschel, ALMA, and JWST, to characterize their physical properties. For nondetected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (≈2 pc)

    The JCMT Plane Survey: First complete data release - emission maps and compact source catalogue

    Get PDF
    We present the first data release of the James Clerk Maxwell Telescope (JCMT) Plane Survey (JPS), the JPS Public Release 1 (JPSPR1). JPS is an 850-µm continuum survey of six fields in the northern inner Galactic Plane in a longitude range of ℓ = 7°–63°, made with the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2). This first data release consists of emission maps of the six JPS regions with an average pixel-to-pixel noise of 7.19 mJy beam−1, when smoothed over the beam, and a compact-source catalogue containing 7,813 sources. The 95 per cent completeness limits of the catalogue are estimated at 0.04 Jy beam−1 and 0.3 Jy for the peak and integrated flux densities, respectively. The emission contained in the compact-source catalogue is 42 ± 5 per cent of the total and, apart from the large-scale (greater than 8 arcmin) emission, there is excellent correspondence with features in the 500-µm Herschel maps. We find that, with two-dimensional matching, 98 ± 2 per cent of sources within the fields centred at ℓ = 20°, 30°, 40° and 50° are associated with molecular clouds, with 91 ± 3 per cent of the ℓ = 30° and 40° sources associated with dense molecular clumps. Matching the JPS catalogue to Herschel 70-µm sources, we find that 38 ± 1 per cent of sources show evidence of ongoing star formation. The images and catalogue will be a valuable resource for studies of star formation in the Galaxy and the role of environment and spiral arms in the star formation process

    The JCMT Plane Survey: early results from the l = 30 degree field

    Get PDF
    We present early results from the JCMT Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes l=7 and l=63 degrees in the 850-{\mu}m continuum with SCUBA-2, as part of the James Clerk Maxwell Telescope Legacy Survey programme. Data from the l=30 degree survey region, which contains the massive star-forming regions W43 and G29.96, are analysed after approximately 40% of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy/beam, after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy/beam. An initial extraction of compact sources was performed using the FellWalker method resulting in the detection of 1029 sources above a 5-{\sigma} surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy/beam (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower ATLASGAL survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average
    corecore