6 research outputs found

    Active normal faulting during the 1997 seismic sequence in Colfiorito, Umbria: Did slip propagate to the surface?

    Get PDF
    In order to determine whether slip during an earthquake on the 26th September 1997 propagated to the surface, structural data have been collected along a bedrock fault scarp in Umbria, Italy. These collected data are used to investigate the relationship between the throw associated with a debated surface rupture (observed as a pale unweathered stripe at the base of the bedrock fault scarp) and the strike, dip and slip-vector. Previous studies have suggested that the surface rupture was produced either by primary surface slip or secondary compaction of hangingwall sediments. Some authors favour the latter because sparse surface fault dip measurements do not match nodal plane dips at depth. It is demonstrated herein that the strike, dip and height of the surface rupture, represented by a pale unweathered stripe at the base of the bedrock scarp, shows a systematic relationship with respect to the geometry and kinematics of faulting in the bedrock. The strike and dip co-vary and the throw is greatest where the strike is oblique to the slip-vector azimuth where the highest dip values are recorded. This implies that the throw values vary to accommodate spatial variation in the strike and dip of the fault across fault plane corrugations, a feature that is predicted by theory describing conservation of strain along faults, but not by compaction. Furthermore, published earthquake locations and reported fault dips are consistent with the analysed surface scarps when natural variation for surface dips and uncertainty for nodal plane dips at depth are taken into account. This implies that the fresh stripe is indeed a primary coseismic surface rupture whose slip is connected to the seismogenic fault at depth. We discuss how this knowledge of the locations and geometry of the active faults can be used as an input for seismic hazard assessment

    Determining Histories of Slip on Normal Faults With Bedrock Scarps Using Cosmogenic Nuclide Exposure Data

    Get PDF
    Cosmogenic exposure data can be used to calculate time-varying fault slip rates on normal faults with exposed bedrock scarps. The method relies on assumptions related to how the scarp is preserved, which should be consistent at multiple locations along the same fault. Previous work commonly relied on cosmogenic data from a single sample locality to determine the slip rate of a fault. Here we show that by applying strict sampling criteria and using geologically informed modeling parameters in a Bayesian-inference Markov chain Monte Carlo method, similar patterns of slip rate changes can be modeled at multiple sites on the same fault. Consequently, cosmogenic data can be used to resolve along-strike fault activity. We present cosmogenic 36Cl concentrations from seven sites on two faults in the Italian Apennines. The average slip rate varies between sites on the Campo Felice Fault (0.84 ± 0.23 to 1.61 ± 0.27 mm yr−1), and all sites experienced a period of higher than average slip rate between 0.5 and 2 ka and a period of lower than average slip rate before 3 ka. On the Roccapreturo fault, slip rate in the center of the fault is 0.55 ± 0.11 and 0.35 ± 0.05 mm yr−1 at the fault tip near a relay zone. The estimated time since the last earthquake is the same at each site along the same fault (631 ± 620 years at Campo Felice and 2,603 ± 1,355 years at Roccapreturo). These results highlight the potential for cosmogenic exposure data to reveal the detailed millennial history of earthquake slip on active normal faults

    Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence

    Get PDF
    Large continental earthquakes necessarily involve failure of multiple faults or segments. But these same critically-stressed systems sometimes fail in drawn-out sequences of smaller earthquakes over days or years instead. These two modes of failure have vastly different implications for seismic hazard and it is not known why fault systems sometimes fail in one mode or the other, or what controls the termination and reinitiation of slip in protracted seismic sequences. A paucity of modern observations of seismic sequences has hampered our understanding to-date, but a series of three Mw>6 earthquakes from August to November 2016 in Central Italy represents a uniquely well-observed example. Here we exploit a wealth of geodetic, seismological and field data to understand the spatio-temporal evolution of the sequence. Our results suggest that pre-existing fault structures controlled the extent and termination of rupture in each event in the sequence, and that fluid diffusion, channelled along these same structures, may have also determined the timing of rupture reinitiation. This dual control of subsurface structure on the stop-start rupture in seismic sequences may be common; future efforts should focus on investigating its prevalence

    Partitioned off-fault deformation in the 2016 Norcia earthquake captured by differential terrestrial laser scanning

    Get PDF
    Field measurements of co‐seismic fault slip often differ from surface slip models derived from satellite geodesy. Quantifying these differences is challenging as many geodetic techniques inadequately image near‐fault deformation. We use an iterative closest point (ICP) algorithm to difference pre‐ and post‐earthquake terrestrial laser scanning (TLS) point clouds to reveal cm‐scale patterns of surface deformation caused by shallow fault slip in the 2016 Mw 6.6 Norcia (central Italy) earthquake. TLS offsets are constant along the fault and match average field measurements. 84% of vertical displacement occurs on a discrete fault zone, with 16% of deformation distributed across a narrow zone <4 m wide. In contrast, horizontal deformation is distributed over an 8 m wide zone with c. 50% of extension accommodated as off‐fault deformation (OFD). The cm‐scale observation of deformation shows that horizontal and vertical co‐seismic OFD is partitioned – in this case, OFD is dominated by horizontal deformation

    A 667-year record of co-seismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

    Get PDF
    Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though ~20% of all faults are in “stress shadows” at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by ~103 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
    corecore