995 research outputs found
Efficacy of Limited Cefuroxime Prophylaxis in Pediatric Patients After Cardiovascular Surgery
Purpose The efficacy of limited cefuroxime prophylaxis in pediatric patients after cardiovascular surgery was evaluated. Methods All patients age 18 years or younger who underwent cardiovascular surgery and received postoperative care from the cardiovascular surgery team between February and July 2006 (preintervention group) and between August 2006 and January 2007 (postintervention group) were eligible for study inclusion. Patients were excluded if they did not receive cefuroxime as postoperative prophylaxis, had a preexisting infection, underwent cardiac transplantation or extracorporeal membrane oxygenation, or underwent delayed sternal closure. The preintervention group received prolonged cefuroxime prophylaxis, and the postintervention group received 24 hours of cefuroxime prophylaxis. Data collected included patient demographics and clinical and laboratory markers of infection, as well as microbiological evidence of and treatment courses for documented or presumed infections. Results A total of 210 patients were enrolled in the study. The number of patients who required additional antibiotics for suspicion of clinical infection did not significantly differ between the preintervention and postintervention groups (18.6% versus 26.9%, respectively), nor did the rate of documented infection (bacteremia, urinary tract infection, endocarditis, sepsis) (42.1% versus 48.3%, respectively). Moreover, indications for the antibiotics initiated were similar between the preintervention and postintervention groups. Clinical and laboratory signs of postoperative infection were similar between groups. There were no differences in postoperative white blood cell counts, peak serum glucose levels, and platelet nadir between groups. Conclusion Limiting postoperative cefuroxime prophylaxis to 24 hours did not increase infectious outcomes in pediatric patients
Evaluating the Duration of Post-Operative Cefuroxime Prophylaxis on Infectious Outcomes in Pediatric Cardiovascular Surgery Patients.
Abstract of poster presented at: Pediatric Academic Societies Annual Meeting; May 2010; Vancouver, British Columbia
Role of aberrant PI3K pathway activation in gallbladder tumorigenesis
The PI3K/AKT pathway governs a plethora of cellular processes, including cell growth, proliferation, and metabolism, in response to growth factors and cytokines. By acting as a unique lipid phosphatase converting phosphatidylinositol-3,4,5,-trisphosphate (PIP3) to phosphatidylinositol-4,5,-bisphosphate (PIP2), phosphatase and tensin homolog (PTEN) acts as the major cellular suppressor of PI3K signaling and AKT activation. Recently, PI3K mutations and loss/mutation of PTEN have been characterized in human gallbladder tumors; whether aberrant PTEN/PI3K pathway plays a causal role in gallbladder carcinogenesis, however, remains unknown. Herein we show that in mice, deregulation of PI3K/AKT signaling is sufficient to transform gallbladder epithelial cells and trigger fully penetrant, highly proliferative gallbladder tumors characterized by high levels of phospho-AKT. Histopathologically, these mouse tumors faithfully resemble human adenomatous gallbladder lesions. The identification of PI3K pathway deregulation as both an early event in the neoplastic transformation of the gallbladder epithelium and a main mechanism of tumor growth in Pten heterozygous and Pten mutant mouse models provides a new framework for studying in vivo the efficacy of target therapies directed against the PI3K pathway, as advanced metastatic tumors are often addicted to “trunkular” mutations
Porous Titanium surfaces to control bacteria growth: mechanical properties and sulfonated polyetheretherketone coating as antibiofounling approaches
Here, titanium porous substrates were fabricated by a space holder technique. The relationship between microstructural characteristics (pore equivalent diameter, mean free-path between pores, roughness and contact surface), mechanical properties (Young’s modulus, yield strength and dynamic micro-hardness) and bacterial behavior are discussed. The bacterial strains evaluated are often found on dental implants: Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. The colony-forming units increased with the size of the spacer for both types of studied strains. An antibiofouling synthetic coating based on a sulfonated polyetheretherketone polymer revealed an effective chemical surface modification for inhibiting MRSA adhesion and growth. These findings collectively suggest that porous titanium implants designed with a pore size of 100–200 µm can be considered most suitable, assuring the best biomechanical and bifunctional anti-bacterial properties.University of Seville VI Plan Propio de Investigación y Transferencia—US 2018, I.3A
The ethics of future trials: qualitative analysis of physicians' decision making
Background:
The decision to conduct a randomized controlled trial (RCT) in a field raises ethical as well as scientific issues. From the clinical equipoise literature, future trials are justifiable if there is ”honest, professional disagreement in the community of expert practitioners as to the preferred treatment”. Empirical data are sparse about how clinicians apply the principles of equipoise to the justification of future RCTs. For example, selective decontamination of the digestive tract (SDD) is not widely used in critical care practice despite the strength of the evidence base and therefore provides a unique opportunity to learn how clinicians think about the ethics of further RCTs in critical care.
Methods:
In an international interview study of views of healthcare professionals about SDD, we undertook a secondary analysis of qualitative data collected using a Theoretical Domains Framework of clinical behaviour. We adopted a general descriptive approach to explore how physicians determined whether another RCT of SDD is
ethical. Following a constant comparison approach, three investigators reviewed 54 purposively chosen transcripts from three international regions. We interpreted the data using thematic analysis.
Results:
We grouped participants’ responses into four inter-related themes: 1) cultural norms about evidence and practice within healthcare; 2) personal views about what evidence is current or applicable; 3) the interpersonal and relational nature of professional decision making locally; and 4) an a priori commitment to future trials. The analysis also identified several unresolved tensions regarding when a future RCT should be pursued. These tensions focused on a clash between potential benefits to current individual patients and potential future harms to patients more broadly.
Conclusions:
Our study suggests that ethical decision making about future RCTs in the field of SDD does not rely strongly on appeals to evidence, even when the quality of the evidence is reasonably high. Rather, “extra-evidential” reasons, including social, professional, and relational factors, seem to influence opinions regarding the ethics of future trials. Further work is required to see if these conclusions are applicable to other clinical topics and settings
Observational Study Design in Veterinary Pathology, Part 1: Study Design
Observational studies are the basis for much of our knowledge of veterinary pathology and are highly relevant to the daily practice of pathology. However, recommendations for conducting pathology-based observational studies are not readily available. In part 1 of this series, we offer advice on planning and conducting an observational study with examples from the veterinary pathology literature. Investigators should recognize the importance of creativity, insight, and innovation in devising studies that solve problems and fill important gaps in knowledge. Studies should focus on specific and testable hypotheses, questions, or objectives. The methodology is developed to support these goals. We consider the merits and limitations of different types of analytic and descriptive studies, as well as of prospective vs retrospective enrollment. Investigators should define clear inclusion and exclusion criteria and select adequate numbers of study subjects, including careful selection of the most appropriate controls. Studies of causality must consider the temporal relationships between variables and the advantages of measuring incident cases rather than prevalent cases. Investigators must consider unique aspects of studies based on archived laboratory case material and take particular care to consider and mitigate the potential for selection bias and information bias. We close by discussing approaches to adding value and impact to observational studies. Part 2 of the series focuses on methodology and validation of methods
Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.
Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease
Recommended from our members
Lrf suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion
Lrf has been previously described as a powerful proto-oncogene. Here we surprisingly demonstrate that Lrf plays a critical oncosuppressive role in the prostate. Prostate specific inactivation of Lrf leads to a dramatic acceleration of Pten-loss-driven prostate tumorigenesis through a bypass of Pten-loss-induced senescence (PICS). We show that LRF physically interacts with and functionally antagonizes SOX9 transcriptional activity on key target genes such as MIA, which is involved in tumor cell invasion, and H19, a long non-coding RNA precursor for an Rb-targeting miRNA. Inactivation of Lrf in vivo leads to Rb down-regulation, PICS bypass and invasive prostate cancer. Importantly, we found that LRF is genetically lost, as well as down-regulated at both the mRNA and protein levels in a subset of human advanced prostate cancers. Thus, we identify LRF as a context-dependent cancer gene that can act as an oncogene in some contexts but also displays oncosuppressive-like activity in Pten−/− tumors
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
- …
