486 research outputs found

    Diagnosis of dynamitron accelerator faults through the observation of narrow nuclear resonances

    Full text link
    Narrow nuclear resonances, initially used to calibrate the energy of the Birmingham Radiation Centre 3MV Dynamitron, have proved useful in discovering and identifying accelerator fault conditions. Short-term energy stability (over e few minutes) of a few tens of eV is common. However, variations of many kV occur for several days before the failure of a thermionic rectifier. The beam energy ripple, as reflected in the full width at half maximum of narrow (p,γ) resonances, has also been analysed to indicate the frequency causing the bulk of the ripple, thus often leading to the identification and correction of faults. Typical faults usually produce increased ripple at either the 50 Hz or 128 kHz oscillator frequency

    Self-consistent anisotropic oscillator with cranked angular and vortex velocities

    Full text link
    The Kelvin circulation is the kinematical Hermitian observable that measures the true character of nuclear rotation. For the anisotropic oscillator, mean field solutions with fixed angular momentum and Kelvin circulation are derived in analytic form. The cranking Lagrange multipliers corresponding to the two constraints are the angular and vortex velocities. Self-consistent solutions are reported with a constraint to constant volume.Comment: 12 pages, LaTex/RevTex, Phys. Rev. C4

    3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Get PDF
    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis

    Riemann's theorem for quantum tilted rotors

    Full text link
    The angular momentum, angular velocity, Kelvin circulation, and vortex velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned with a principal axis or (2) lie in a principal plane of the inertia ellipsoid. In the second case, the ratios of the components of the Kelvin circulation to the corresponding components of the angular momentum, and the ratios of the components of the angular velocity to those of the vortex velocity are analytic functions of the axes lengths.Comment: 8 pages, Phys. Rev.

    Electronic and structural properties of superconducting MgB2_2, CaSi2_2 and related compounds

    Full text link
    We report a detailed study of the electronic and structural properties of the 39K superconductor \mgbtwo and of several related systems of the same family, namely \mgalbtwo, \bebtwo, \casitwo and \cabesi. Our calculations, which include zone-center phonon frequencies and transport properties, are performed within the local density approximation to the density functional theory, using the full-potential linearized augmented plane wave (FLAPW) and the norm-conserving pseudopotential methods. Our results indicate essentially three-dimensional properties for these compounds; however, strongly two-dimensional σ\sigma-bonding bands contribute significantly at the Fermi level. Similarities and differences between \mgbtwo and \bebtwo (whose superconducting properties have not been yet investigated) are analyzed in detail. Our calculations for \mgalbtwo show that metal substitution cannot be fully described in a rigid band model. \casitwo is studied as a function of pressure, and Be substitution in the Si planes leads to a stable compound similar in many aspects to diborides.Comment: Revised version, Phys.Rev.B in pres

    Green functions for generalized point interactions in 1D: A scattering approach

    Get PDF
    Recently, general point interactions in one dimension has been used to model a large number of different phenomena in quantum mechanics. Such potentials, however, requires some sort of regularization to lead to meaningful results. The usual ways to do so rely on technicalities which may hide important physical aspects of the problem. In this work we present a new method to calculate the exact Green functions for general point interactions in 1D. Our approach differs from previous ones because it is based only on physical quantities, namely, the scattering coefficients, RR and TT, to construct GG. Renormalization or particular mathematical prescriptions are not invoked. The simple formulation of the method makes it easy to extend to more general contexts, such as for lattices of NN general point interactions; on a line; on a half-line; under periodic boundary conditions; and confined in a box.Comment: Revtex, 9 pages, 3 EPS figures. To be published in PR

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Effect of network connectivity on behavior of synthetic Broborg Hillfort glasses

    Get PDF
    There is wide industrial interest in developing robust models of long-term (>100 years) glass durability. Archeological glass analogs, glasses of similar composition, and alteration conditions to those being tested for durability can be used to evaluate and inform such models. Two such analog glasses from a 1500-year-old vitrified hillfort near Uppsala, Sweden have previously been identified as potential analogs for low concentration Fe-bearing aluminosilicate nuclear waste glasses. However, open questions remain regarding the melting environment from which these historic glasses were formed and the effect of these conditions on their chemical durability. A key factor to answering the previous melting and durability questions is the redox state of Fe in the starting and final materials. Past work has shown that the melting conditions of a glass-forming melt may influence the redox ratio value (Fe+3/∑Fe), a measure of a glass's redox state, and both melting conditions and the redox ratio may influence the glass alteration behavior. Synthetic analogs of the hillfort glasses have been produced using either fully oxidized or reduced Fe precursors to address this question. In this study, the melting behavior, glass transition temperature, oxidation state, network structure, and chemical durability of these synthesized glass analogs is presented. Resulting data suggests that the degree of network connectivity as impacted by the oxidation state of iron impacted the behavior of the glass-forming melt but in this case does not affect the chemical durability of the final glass. Glasses with a lower degree of melt connectivity were found to have a lower viscosity, resulting in a lower glass transition temperature and softening temperature, as well as in a lower temperature of foam onset and temperature of foam maximum. This lower degree of network connectivity most likely played a more significant role in accelerating the conversion of batch chemicals into glass than the presence of water vapor in the furnace's atmosphere. Future work will focus on using the results from this work with outcomes from other aspects of this project to evaluate long-term glass alteration models

    An improved method for measuring muon energy using the truncated mean of dE/dx

    Full text link
    The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
    • …
    corecore