92 research outputs found

    Unrelieved Pain and Distress in Animals: An Analysis of USDA Data on Experimental Procedures

    Get PDF
    Pain and distress are core issues in the field of animal experimentation and in the controversy that surrounds it. We sought to add to the empirical base of the literature on pain and distress by examining government data on experimental procedures that caused unrelieved pain and distress (UPAD) in animals. Of the species regulated by the U.S. Department of Agriculture (USDA), most of the approximately 100,000 animals subjected to UP AD during the year analyzed (1992) were guinea pigs and hamsters. Most of these animals were used in industry laboratories for various testing procedures, primarily vaccine potency testing. We discuss the limitations of the USDA data and recommend changes to the current reporting system. By identifying experimental procedures that cause UPAD in large numbers of USDA-regulated animals, the present analysis can be viewed as a means of identifying priorities for research and development of alternatives methods (replacements, reductions, and refinements)

    Assessment Practices and Experiences of Sex Trafficking in Caseloads of Service Providers Working with High Risk Youth in Indiana

    Get PDF
    With increased recognition of sex trafficking, calls have been made for greater identification and screening. Lack of awareness and assessment likely contribute to low identification of sex trafficking victims. The present study examined assessment practices, confidence in detecting trafficking, and experiences with DMST survivors in the caseloads of service providers in the past year. Employees at high-risk settings were recruited, resulting in a sample of 76 providers representing 21 agencies. Data revealed that while general risk factors were typically assessed, sex trafficking-specific risk factors and experiences were assessed less often. Approximately 30% of participants indicated they worked with at least one sex trafficking victim in the past year. However, 44% of participants indicated low confidence in detection. Approximately 23% of participants had completed sex trafficking training, but few differences emerged between those with and without prior training. Increased training, assessment, and evaluations of the effectiveness of training programs are recommended

    Unilateral vs. bilateral STN DBS effects on working memory and motor function in Parkinson disease

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN DBS) can reduce working memory while improving motor function in Parkinson disease (PD), but findings are variable. One possible explanation for this variability is that the effects of bilateral STN DBS on working memory function depend in part on functional or disease asymmetry. The goal of this study was to determine the relative contributions of unilateral DBS to the effects seen with bilateral DBS. Motor (Unified Parkinson Disease Rating Scale Part III, UPDRS) and working memory function (Spatial Delayed Response, SDR) were measured in 49 PD patients with bilateral STN DBS while stimulators were Both-off, Left-on, Right-on and Both-on in a randomized, double-blind manner. Patients were off PD medications overnight. Effects of unilateral DBS were compared to effects of bilateral STN DBS. Mean UPDRS and SDR responses to Left-on vs. Right-on conditions did not differ (p>.20). However, improvement in contralateral UPDRS was greater and SDR performance was more impaired by unilateral DBS in the more affected side of the brain than in the less affected side of the brain (p=.008). The effect of unilateral DBS on the more affected side on contralateral UPDRS and SDR responses was equivalent to that of bilateral DBS. These results suggest that motor and working memory function respond to unilateral STN DBS differentially depending on the asymmetry of motor symptoms

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current Îœ ÎŒ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische UniversitĂ€t MĂŒnchen; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. UniversitĂ© Libre de Bruxelles; BĂ©lgicaFil: Golup, Geraldina Tamara. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadĂĄFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadĂĄFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapĂłnFil: Zoll, M.. Stockholms Universitet; Sueci

    The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation

    Get PDF
    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z 10 million galaxies spanning 14,000 deg2 . In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target an r 80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements at z < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g., N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    <p>During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.</p

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    International audienceFault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging‐wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP‐2). We present observational evidence for extensive fracturing and high hanging‐wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP‐2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging‐wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off‐fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation
    • 

    corecore