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Abstract 

Background: Although deep brain stimulation of the subthalamic nucleus (STN DBS) in 

Parkinson disease (PD) improves motor function, it has variable effects on working memory 

(WM) and response inhibition (RI) performance. Currently, little is known about the 

relationship between the neurophysiological response to STN DBS and cognitive 

functioning.  The purpose of the present study was to determine the neural correlates of STN 

DBS- induced variability in cognitive control performance.  Methods: We measured bilateral 

STN DBS induced blood flow changes (PET and [
15

O]-water on one day) in the 

supplementary motor area (SMA), dorsolateral prefrontal cortex (DLPFC), anterior cingulate 

cortex (ACC), and right inferior frontal cortex (rIFC) as well as WM and RI changes (Spatial 

Delayed Response and Go-No-Go tasks on the next day) in 24 PD participants. On both days, 

participants withheld PD medications overnight and conditions (DBS off vs. bilateral on) 

were administered in a counterbalanced, double-blind manner. Results: As predicted, STN 

DBS-induced change in DLPFC blood flow correlated with STN DBS-induced change in 

WM error, but not RI performance. Furthermore, change in ACC blood flow correlated with 

change in RI but not WM performance. Both were inverse relationships, such that increased 

blood flow related to decreased cognitive performance in response to STN DBS.  

Conclusions:  The results of the present study demonstrate that the variability in the effects 

of STN DBS on cognitive control performance relates to STN DBS-induced cortical blood 

flow changes.  This relationship highlights the need to further understand the mechanism(s) 

of STN DBS as variability in stimulation characteristics could alter behavioral and cortical 

responses. 



Hershey 3 

Keywords:  Parkinson disease, deep brain stimulation, working memory, response 

inhibition, PET 



Hershey 4 

  

Deep brain stimulation of the subthalamic nucleus (STN DBS) provides effective treatment 

of the motor symptoms for many individuals with Parkinson disease (PD) (Limousin et al., 

1995). However, recent work suggests that STN DBS has a more variable effect on cognitive 

functioning (Voon, Kubu, Krack, Houeto, & Troster, 2006) and may even negatively affect 

select cognitive processes, especially cognitive control (Temel, Blokland, Steinbusch, & 

Visser-Vandewalle, 2005). In fact, a recent review of the literature revealed that 

approximately 41% of individuals with STN DBS experience cognitive problems (Temel et 

al., 2006).  Cognitive dysfunction in non-demented individuals with PD is common (30-70%) 

(Green et al., 2002); can significantly decrease perceived quality of life (Schrag, Jahanshahi, 

& Quinn, 2000); can impair functional ability in work and home environments (Weintraub, 

Moberg, Duda, Katz, & Stern, 2004); and is a relatively common effect of STN DBS (Temel 

et al., 2006). To further optimize this therapeutic technique, it is important to determine the 

mechanisms that produce the variability in cognitive effects of STN DBS. This information 

may also provide new insights into basal ganglia-thalamocortical pathway involvement in 

cognitive control.  

 

Although the role of the prefrontal cortex (PFC) in cognitive control processes has been 

emphasized, the STN also may contribute to cognitive control systems (Baunez et al., 2001; 

Chudasama, Baunez, & Robbins, 2003; Nakano, Kayahara, Tsutsumi, & Ushiro, 2000) 

through its connections to the PFC (Alexander, Crutcher, & DeLong, 1990; Alexander, 

DeLong, & Strick, 1986).  For example, working memory (WM) processes rely on the 

dorsolateral prefrontal cortex (DLPFC) (Braver et al., 1997; Goldman-Rakic, 1990; Wager & 

Smith, 2003), whereas performance on response inhibition (RI) tasks is often associated with 
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the anterior cingulate cortex (ACC) and the right inferior frontal cortex (rIFC) (Aron, 

Robbins, & Poldrack, 2004; Barch et al., 2001; Botvinick, Nystrom, Fissell, Carter, & Cohen, 

1999; Braver, Barch, Gray, Molfese, & Snyder, 2001; Konishi et al., 1999; Menon, Adleman, 

White, Glover, & Reiss, 2001; Nee, Wager, & Jonides, 2007; Wager et al., 2005). According 

to the most commonly accepted models of frontal-striatal circuitry (Alexander et al., 1990; 

Alexander et al., 1986; Middleton & Strick, 2000), basal ganglia output directly targets 

prefrontal cortex including DLPFC and ACC, and the STN plays an important role in these 

circuits (Temel et al., 2005).  Recent evidence also suggests that rIFC connects to STN via 

the  “hyperdirect” pathway (Aron, Behrens, Smith, Frank, & Poldrack, 2007).  A functional 

role of the STN in these cognitive control processes is supported by the effects of lesions of 

the STN in animals, specifically demonstrating poor cognitive control and impaired ability to 

inhibit responses under conditions of strong conflict (Baunez et al., 2001; Baunez, Nieoullon, 

& Amalric, 1995; Baunez & Robbins, 1997; Temel et al., 2005).   

 

However, STN DBS has variable effects on tasks that rely on cognitive control (Voon et al., 

2006; Temel et al., 2005) whereas those that do not depend heavily on cognitive control (e.g., 

non-declarative memory, decision-making, visuomotor sequencing, and language) appear to 

be relatively unaffected by STN DBS (Funkiewiez et al., 2004; Halbig et al., 2004; Morrison 

et al., 2004a).   Two aspects of cognitive control that have contradictory findings across 

studies are WM and RI performance.  STN DBS has been demonstrated to improve 

performance (Pillon et al., 2000a; van den Wildenberg et al., 2006), impair performance 

(Dujardin, Defebvre, Krystkowiak, Blond, & Destee, 2001; Hershey et al., 2004; Witt et al., 
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2004), or to have no significant effect on cognitive control performance (Morrison et al., 

2004).   

 

The variability in STN DBS responses across studies may, in part, reflect methodological 

differences.  The most obvious difference across studies is the use of different cognitive 

tasks.  However, other methodological limitations also may contribute to these discrepancies.  

For example, small sample size limits confidence in some findings (N < 15; c.f., Jahanshahi 

et al., 2000; Schroeder et al., 2002; Schroeder et al., 2003).  Medication (i.e., levodopa) 

effects may have confounded several previous investigations (c.f., Pillon et al., 2000b; 

Trepanier et al., 2000; Witt et al., 2004) since levodopa has its own variable effects on 

cognition (Cools, 2006), making it difficult to isolate the specific effects and mechanisms of 

STN stimulation.  Other studies focused on the surgical effects of STN DBS rather than the 

direct manipulation of only stimulation (c.f., Saint-Cyr, Trepanier, Kumar, Lozano, & Lang, 

2000; Trepanier, Kumar, Lozano, Lang, & Saint-Cyr, 2000).  

 

Although methodological differences may have contributed to some of the discrepancies 

across studies, other factors must explain variability of STN DBS-induced cognitive effects 

across individuals within a study.  Clarification of these other factors requires an 

understanding of the neurophysiological mechanisms of STN DBS which still remain 

unclear. The most commonly proposed mechanisms of STN DBS are that it 1) blocks local 

neuronal activity (“conduction block”), 2) excites local inhibitory afferent neurons to reduce 

neuronal output, or 3) directly excites output neurons (Montgomery, Jr. & Baker, 2000; 

Perlmutter & Mink, 2006).  In support of the latter mechanism, PET studies have revealed 
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that STN stimulation increases subcortical while decreasing cortical blood flow (Hershey et 

al., 2003; Schroeder et al., 2003), suggesting that stimulation increases STN output leading to 

increased thalamic inhibition of cortical activity (Hershey et al., 2003).  Furthermore, PET 

studies have demonstrated that STN DBS increased blood flow or glucose metabolism in 

both the thalamus as well as areas of the frontal, temporal, and parietal cortex (Hilker et al., 

2004; Trost et al., 2006). Additional PET studies have also been conducted with the inclusion 

of motor or cognitive tasks during PET scanning (Schroeder et al., 2002; Strafella, Dagher, & 

Sadikot, 2003).  Interestingly, STN stimulation was reported to decrease activation in the 

ACC during a response inhibition (Stroop) task and the decreased activity in the ACC 

correlated with decreases in Stroop interference performance (Schroeder et al., 2002). 

However, because these studies assessed the effects of stimulation on blood flow changes 

during a cognitive task, it is impossible to separate the effects of stimulation on blood flow 

from the effects of the cognitive task on blood flow (Schroeder et al., 2002; Strafella et al., 

2003). Thus, these studies have limited ability to determine the neurophysiologic 

underpinnings of STN DBS’s effects on cognitive control. 

 

Therefore, the purpose of the present study was to investigate the possible neural correlates 

of STN DBS induced variability in cognitive control, focusing on the relationships between 

STN DBS blood flow responses in cortical areas and WM and RI performance.  To address 

this issue, we correlated regional PET blood flow change with WM and RI change induced 

by STN DBS in people with PD.  We predicted that DBS-induced blood flow changes in the 

DLPFC would be associated with DBS-induced changes in WM performance, whereas DBS-

induced blood flow changes in the ACC would be related to RI performance. Based on the 
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growing evidence that the rIFC is important for successful RI performance, we also explored 

DBS-induced blood flow changes in the rIFC as another possible neural correlate of STN 

DBS induced changes in RI performance.  Finally, we also examined stimulation-induced 

blood flow changes in the supplementary motor area (SMA). Although we expected 

stimulation-induced changes in blood flow in the SMA, we did not expect any specific 

relationship between blood flow in the SMA and cognitive performance. Thus, the SMA 

region served as a “control” to guard against the possibility of a more global relationship 

between blood flow and cognitive performance. Importantly, we assessed the effects of 

stimulation on blood flow and cognitive functioning separately, without the confound of 

medication, thus focusing exclusively on the effects of stimulation.   

 

Materials and Methods   

Participants. Twenty-nine individuals with PD and previously implanted bilateral STN 

stimulators were studied. Each met the diagnostic criteria for clinically definite PD (Racette, 

Rundle, Parsian, & Perlmutter, 1999). Exclusionary criteria included a history of 

neurological events or diagnoses other than PD, or dementia on clinical exam prior to 

surgery. The surgical implantation of stimulators (Medtronic model 3389 DBS leads) 

targeted STN with a technique that combines conventional stereotactic planning using 

formulas with reference to the anterior-posterior commissural line, visual targeting on T2 

weighted magnetic resonance imaging (MRI), frame-based targeting using computerized 

methods (Medtronic STEALTH STATION, Framelink IV) and microelectrode recording 

(Tabbal et al., 2007).  The degree of subsequent clinical benefit achieved by stimulation, as 

measured by change in UPDRS motor subscore 3 (mean improvement in total UPDRS motor 
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scores was 52%, (SD = 14); paired t-test OFF versus ON, t(22)= 9.8, p < .001), is comparable 

to other centers.  Participants had to be at least 2 months post-STN stimulator implantation to 

allow time for programming to achieve optimal clinical benefit for each individual. All 

participants except 3 were taking levodopa/carbidopa daily and 19 were taking other PD 

medications (e.g. amantadine, pergolide, pramipexole, or entacapone). All participants except 

two were right handed. This study was approved by the Institutional Review Board at 

Washington University School of Medicine and all participants gave informed consent. 

 

Data from the 29 PD participants who had adequate PET scans were examined. However, 

one participant was excluded for being an outlier (>2.5 SDs from the mean) on blood flow 

change in the ACC region, and 4 participants were excluded for having invalid GNG data 

due to tremor.  On average, the remaining 24 participants with valid PET and cognitive data 

(10 female, 14 male) were 61.7 years old (SD = 9.2), had been diagnosed with PD for 12.8 

years (SD = 4.7) and were tested 8.7 months (SD = 5.9) following STN stimulator 

implantation.  

 

Overview of protocol. Participants were assessed on two consecutive days. On each study 

day, participants refrained from taking any PD medications for at least 12 hours prior to 

testing and were tested with both stimulators off (OFF condition) and with both stimulators 

on (ON condition).  Order of stimulation condition was counterbalanced across participants 

and both participants and examiners were blind to condition. On the first study day 

participants had PET scans with STN DBS either ON or OFF and on the second day had 

cognitive testing and UPDRS motor ratings under the same STN DBS conditions.  
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PET Scans. PET scans were performed at least 42 minutes after change of the stimulator 

settings. Participants were scanned on the Siemens/CTI ECAT EXACT HR 47 tomograph 

(Wienhard et al., 1994) in 2D acquisition mode with a 15 cm axial field of view, 3.125 mm 

center to center slice separation and simultaneous collection of 47 slices.  A 20 gauge plastic 

catheter was placed in an antecubital vein for [
15

O]-water injection. The participant was 

positioned in the PET scanner using cross laser lines and a Polyform mask. The mask was 

marked on the participant’s face to detect any change in the head position relative to the 

mask. Attenuation was measured using three rotating rod sources of 
68

Ge/
68

Ga. During each 

scan lights were dimmed and the room was quiet while participants kept their eyes closed.  

About 50 mCi of [
15

O]-water was injected intravenously as a bolus followed by two minutes 

of data acquisition.  Each participant had as many as six separate PET scans in each study 

block.  The scans were 14 minutes apart to permit adequate radioactive decay. After the first 

block, the participant was removed from the scanner to change settings. A second attenuation 

scan and a second set of six PET scans were done at least 42 minutes after the settings 

change. 

 

The entire study was recorded with two video cameras; one camera recorded the head and the 

other recorded the body during the PET scans. Videos were reviewed to exclude possible 

movement during data acquisition. In addition, surface EMG electrodes over bilateral biceps, 

wrist flexors, quads and gastroc muscles were used to detect any muscle activation without 

visible movement. EMG signals were amplified at a gain of 2000 and filtered on line with a 

band pass of 10Hz-1000 kHz.  The EMG signals were monitored on line and stored on 
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computer using a CED micro 1401 interface (Cambridge Electronic Design).  Codes were 

inserted into the data stream to coincide with the onset and offset of each scan. Any observed 

movement, loud noise, etc was remarked with a separate code.   

 

Cognitive Testing 

Spatial Delayed Response (SDR) Task. The SDR task is an experimentally derived 

working memory task (Hershey, Craft, Glauser, & Hale, 1998) that has been closely linked to 

lateral prefrontal cortex functioning in animals and humans (Funahashi, Bruce, & Goldman-

Rakic, 1989; Funahashi, Bruce, & Goldman-Rakic, 1993; Funahashi, Chafee, & Goldman-

Rakic, 1993; Goldman-Rakic, Funahashi, & Bruce, 1990; Luciana, Depue, Arbisi, & Leon, 

1992). A central fixation cross appeared on a computer screen placed approximately 40 cm 

away from the participant. While fixated, either one or two cues (each 1 cm in diameter) 

appeared for 150 msec in any of 32 possible unmarked locations at an 11.5 cm radius from 

the central fixation. A delay period (5 or 15 sec) was then imposed. During the delay, 

participants performed a continuous performance task (CPT) in which a series of geometric 

shapes (triangle, square and diamond) appeared in place of the fixation cross (1000 msec 

duration, 750-1250 msec inter-trial interval). Participants pressed the spacebar whenever the 

diamond shape appeared. After the delay, the fixation cue returned, and participants pointed 

on the computer screen where they remembered seeing the cue(s). Responses were measured 

in X and Y coordinates and compared to the actual location of the cue. Delay trials and trials 

with no mnemonic load (cue-present trials) were presented in random order. On the cue-

present trials the cue (dot) was present during the response phase. This set of trials gave an 

indication of participants' pointing accuracy. Mean error in mm (distance between recall and 
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actual target) was calculated for each participant for each type of trial. There were either one 

or two cues to be remembered on each trial. In the two-cue condition, both locations were 

presented simultaneously, and in the recall phase, participants pointed to both locations, in 

any order desired. Forty experimental trials were presented, 20 with only one cue presented 

and 20 with two cues presented. Trials were blocked by number of cues and the order of 

blocks was counterbalanced across participants.  Participants performed 4 cue-present trials 

and 8 test trials per delay (i.e., 16 cue-absent trials) for each block.  

Go-No-Go (GNG) Task. The GNG task assessed the ability to inhibit a prepotent 

response under conditions of low or high prepotent response strength (Barch et al., 2001; 

Braver et al., 2001; Casey et al., 1997), and requires active cognitive control processes such 

as conflict monitoring. This task involved monitoring a visual display while single uppercase 

letters were presented one at a time interspersed with the number “5” (250 msec duration, 

1000 msec intertrial interval). In this task, participants were instructed to push a target 

response button at the occurrence of every letter but to withhold a response when the number 

“5” was presented. Target frequency (percent of trials where a button press was required, e.g. 

letters) was manipulated in a blocked fashion. There were two levels of target frequency 

(medium = 50%; high = 83%).  The high target frequency block is designed to produce a 

strong prepotent response (e.g. press the button) so is more challenging for response 

inhibition skills. One block at each frequency level was performed with the order randomly 

determined for each participant. Each block contained 150 trials. Reaction times and 

accuracy rates were recorded. 

 

Analyses 
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PET Scans. PET emission scans were reconstructed using filtered back projection and 

measured attenuation.  Only the initial 40 seconds of the data after the arrival of the 

radioactive water in the brain were analyzed for each scan. Images were smoothed with a 

three dimensional Gaussian filter to a final resolution of 16 mm full width at half maximum.  

All images were coregistered to the initial emission image (Woods, Cherry, & Mazziota, 

1992).  The two transmission images from each participant were coregistered to each other 

and averaged.  This average attenuation image was resliced to match each emission image 

and new attenuation corrections were forward projected.  All emission scans were 

reconstructed a final time using these coregistered, averaged attenuation corrections.  The 

new PET images were coregistered and resliced to a standard mean blood flow image in 

Talairach atlas (Talairach & Tournoux, 1988) space with 12-parameter fit.  Individual images 

were normalized using mean whole brain counts and masked to include only the voxels in 

common among all scans. Scans were excluded from further analyses if the patient had 

tremor, other movements or sustained substantial EMG activity above background noise 

within the 40 seconds of data acquisition. Participants’ data were retained for analysis if they 

had at least one usable scan per condition. 

Based on the functional neuroimaging evidence that the DLPFC is involved in 

working memory processes and that the ACC and rIFC are involved in response inhibition, 

these regions of interest (ROIs) were specifically chosen. The ROIs were defined on the basis 

of previous fMRI results with similar versions of the SDR (Leung, Gore, & Goldman-Rakic, 

2002) and GNG (Braver et al., 2001) tasks.  A 10.4 mm diameter (equivalent to the width of 

five voxels) sphere was placed on coordinates for left and right DLPFC (Talairach 

coordinates of -34, 44, 27 and 34, 44, 27, respectively; (Leung et al., 2002)) a midline 
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anterior cingulate cortex region (Talairach coordinates of 3, 19, 35; (Braver et al., 2001)), 

and the right IFC (Talairach coordinates of 41, 16, 19 (Konishi et al., 1999)). See Figure 1 for 

illustration of the location of these coordinates. Mean blood flow within each sphere was 

obtained for each participant’s OFF and ON average blood flow image, averaging across left 

and right DLPFC. In addition, as a “control” region, we also extracted the mean blood flow 

in the SMA for each participant’s OFF and ON average blood flow image.  Percent change in 

blood flow from OFF to ON conditions was calculated as the dependent measure.  

 

Effects of stimulation. To determine the effects of STN stimulation on blood flow and 

cognitive control, one sample t-tests were performed for change in blood flow and change in 

performance on the SDR and GNG tasks. To simplify analyses and thus reduce the number 

of correlations performed, correlational analyses focused on the more difficult conditions of 

both tasks previously found to be more sensitive to the effects of STN DBS (Hershey et al., 

2004). For the SDR, this was the 2 cue condition; for the GNG, this was a discriminability 

measure (Pr; [target accuracy – (1 – nontarget accuracy)]) from the high demand condition. 

Of note, both of these measures are based on performance accuracy and are not dependent on 

motor speed, thus reducing the potential influence of motor symptoms (e.g., bradykinesia) on 

cognitive performance.  Significance level was set at p < .05. 

 

Cognitive and PET correlations.  Percent change in SDR and GNG performance from 

bilateral OFF to bilateral ON conditions was calculated for each measure and correlated 

(Pearson r) with blood flow change in DLPFC, ACC, rIFC, and SMA.  To determine the 

strength of these correlations, potential confounding variables were included as covariates in 
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hierarchical linear regression models. For these models, change in task performance was the 

dependent variable, and age, disease severity (measured by off medication, off stimulation 

UPDRS score), and finally change in regional blood flow were entered in a hierarchical 

fashion. The unique relationship between blood flow and task performance change (R
2
 

change), after effects of age and disease severity were removed, was tested for significance. 

Significance for all analyses was set at p < .05. 

 

Results 

Cognitive Performance.  For the SDR task of working memory, there was a significant 

main effect of task difficulty (F(1,22) = 32.77, p <.001) but not a significant main effect of 

stimulation (p = .67) or interaction between task difficulty and stimulation (p = .84).  

Similarly, for the GNG task of response inhibition, there was a main effect of task difficulty 

(F(1,23) = 35.61, p <.001), but no significant effect of stimulation (p = .30) or interaction 

between task difficulty and stimulation condition (p = .13).  See Table 1 for descriptive 

statistics of task performance.  Based on the effects of task difficulty and previous evidence 

that the more difficult conditions of both of these tasks are most likely to be affected by 

stimulation (Hershey et al., 2004), subsequent analyses focused on the more difficult 

condition of each task. 

 

Effects of stimulation.  As expected, stimulation significantly improved motor symptoms 

(UPDRS: t(23) = 8.76, p < .001).  In contrast, there were no significant differences in blood 

flow in the selected regions or cognitive performance between the ON and OFF stimulation 

conditions.  Changes in blood flow (DLPFC: -1.49 (SD = 9.55); ACC: 0.07 (SD = 2.94); 
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rIFC: -0.62 (SD = 3.72); SMA: -0.56 (SD = 2.53)) and changes in cognitive performance 

(SDR: 4.92 (SD = 20.37); GNG: -5.32 (SD = 22.19)) were not significantly different from 

zero (all ps > .24). However, the trend was for impaired performance on both cognitive tasks 

with STN DBS ON.  

 

Cognitive and PET correlations.  There were no significant relationships between 

stimulation-induced changes in regional blood flow; blood flow changes in the SMA was not 

related to blood flow changes in the DLPFC, ACC, or rIFC (all ps >.17) and there were no 

significant relationship among blood flow changes in the DLPFC, ACC, or rIFC (all ps > 

.10).   Similarly, stimulation-induced changes on SDR performance did not correlate with 

changes in GNG performance (p = .30).   

 

In support of our hypothesis, change in DLFPC blood flow correlated with change in SDR 

performance (r = .52, p = .009), but not GNG performance (r = -.16, p = .45). Also as 

predicted, change in ACC blood flow correlated with change in GNG performance (r = -.44, 

p = .03), but not SDR performance (r = .14, p = .52). Both of these significant relationships 

indicated that impaired performance was related to increases in blood flow with stimulation, 

whereas improved performance was related to decreases in blood flow with stimulation (See 

Figure 2 A & B). The correlations between blood flow changes in DLPFC and ACC and 

changes in cognitive performance remained significant even after covarying change in 

UPDRS motor score, age and disease severity (partial correlations, ps <.038).  Furthermore, 

hierarchical linear regression analyses demonstrated that, after controlling for UPDRS motor 

score, age, and disease severity, stimulation-induced blood flow changes significantly 
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predicted stimulation-induced cognitive performance changes (SDR and DLPFC, R
2
 = .24, 

F(1,20) = 6.6, p = .018; GNG and ACC change, R
2
 = .20, F(1,20) = 5.1, p = .035).   

 

Although our primary hypotheses were supported, our secondary analyses revealed that there 

was no relationship between stimulation-induced changes in rIFC and stimulation-induced 

changes in cognitive control performance (SDR: p = .81; GNG: p = .65).  As anticipated, 

stimulation-induced changes in SMA blood flow were not correlated with stimulation-

induced changes in cognitive performance (SDR: p = .14; GNG: p = .94).    

 

Discussion  

Despite the beneficial effects of STN DBS on the motor symptoms of PD, the effects on 

cognition are highly variable.  The present study demonstrates that STN DBS-induced 

change in WM performance is associated with change in regional blood flow in the DLPFC, 

while change in RI task performance is associated with change in regional blood flow in the 

ACC.  These correlations were specific and as predicted; they are consistent with frontal-

striatal circuitry and the neurophysiological effects of STN DBS as well as the functional role 

of these areas in cognitive control.  These relationships were not due to participant 

characteristics such as age, motor symptom severity, or motor benefit from STN DBS. In 

addition, the results indicate an inverse relationship between regional blood flow and 

cognitive control as measured by both tasks; STN DBS-induced increases in regional blood 

flow were associated with decreased cognitive control, whereas STN DBS-induced 

decreases in regional blood flow were associated with increased cognitive control 

performance.  However, the factor(s) contributing to the variability in responses to STN 
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stimulation, which may mediate the relationship between blood flow changes and cognitive 

control, are yet to be determined.  

 

The key finding of the present study is that the stimulation-induced change in cognitive 

control performance was inversely related to the stimulation-induced change in regional 

blood flow in the DLPFC and ACC.  Importantly, the relationship between cognitive control 

and regional blood flow changes was not limited to just the degree of change, but also the 

direction.  Participants with stimulation-induced decline in cognitive control performance 

demonstrated stimulation-induced increased blood flow in the relevant cortical regions 

whereas participants with improved cognitive control performance had reduced rCBF in 

these same regions (see Figure 2). The specific relationships between blood flow change in 

the DLPFC with WM and blood flow change in ACC with RI performance further support 

the notion that these areas are important for cognitive control (Braver et al., 2001; Leung et 

al., 2002).   

 

Despite the evidence from other studies demonstrating that rIFC is involved in response 

inhibition, our exploratory analysis of DBS-induced blood flow responses in this area did not 

indicate any relationship with stimulation-induced changes in GNG performance.  Several 

possible reasons may explain this negative finding.  First, methodological differences may 

account for our seemingly discrepant findings.  For example, the majority of the research 

demonstrating involvement of the rIFC in response inhibition has utilized the Stop Signal 

Task (c.f., Aron & Poldrack, 2006), which requires the inhibition of an already initiated 

response, whereas the GNG task in the present study requires the inhibition of a prepotent 
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(but not yet initiated) response.  In fact, there is even evidence for differences in cortical 

activation based on the specific GNG task that is used (Simmonds, Pekar, & Mostofsky, 

2008).  A second possibility may relate to individual or group differences.  The participants 

in the current study were primarily older adults, who may rely on slightly different functional 

neuroanatomy for response inhibition (c.f., Nielson, Langenecker, & Garavan, 2002).  

Finally, and most likely, it is highly probable that rIFC is critical for response inhibition, but 

that it simply is not significantly affected by STN stimulation.  The DLPFC and ACC, 

however, are specific targets of frontal-striatal circuits (Alexander et al., 1990; Alexander et 

al., 1986; Middleton et al., 2000), demonstrate altered rCBF with STN stimulation (Sestini et 

al., 2002), and are also involved in WM and RI performance.   

 

Several caveats regarding this study should be noted.  Our main findings are based upon 

correlational analyses and do not prove causal relationships between the STN DBS-induced 

changes in blood flow and cognitive control performance.  However, this type of analysis 

does provide meaningful information. If the STN DBS-induced behavioral change depends 

on functional modifications of basal ganglia-prefrontal circuits that can be measured by 

cortical blood flow changes, then these changes should be correlated. Our findings support 

this interpretation and are consistent with a potential causal relationship. Although we failed 

to confirm a significant STN DBS-induced impairment of cognitive control, these results fit 

with the high degree of variability in cognitive and blood flow responses to STN DBS across 

studies (Burn & Troster, 2004; Takeshita et al., 2005; Temel et al., 2005; Voon et al., 2006),.  

In this study, the mean change in cognitive response to STN stimulation was in the direction 

of impairment but did not reach statistical significance due to the high variability across 
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participants.  In fact, this variability across participants permitted us to identify significant 

correlations between changes in behavioral performance and blood flow response to STN 

DBS.  The factors driving these differing individual responses have not yet been identified 

nor have their mechanisms of action been delineated, thus requiring further investigation.  

 

A change in blood flow could reflect alterations in interneuronal activity within these regions 

(DLPFC or ACC), changes in input from distant pathways such as the basal ganglia-thalamo-

cortical circuits, or both, since regional blood flow changes reflect neuronal activity in target 

synaptic fields.   Therefore, measurements of stimulation-induced blood flow changes permit 

insight into possible underlying mechanisms (Hershey & Mink, 2006).  Some have 

hypothesized that STN DBS forces “regularization” of  irregular STN output leading to 

improved motor performance in people with PD (Vitek, 2002). Although regularization of 

STN output may improve motor function, a forced regular rate of firing may interfere with 

the phasic burst firing related to cognitive control processes (Funahashi et al., 1989; 

Kropotov & Etlinger, 1999; Schultz, 1997). Our findings support this idea.  Stimulation-

induced increased input or interneuronal activity in DLPFC or ACC could override the firing 

patterns that support optimal cognitive control functioning. Likewise, reduced input or 

interneuronal activity in these prefrontal regions could reflect decreased competition or noise 

thereby permitting firing patterns underlying cognitive function to operate more optimally.  

The crucial next step is to identify the factor(s) that determine the neurophysiological 

response to STN DBS as this may also mediate the cognitive response to STN stimulation. 
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It is possible that stimulation variables, such as the precise location of the active electrode 

contact, the extent of the field of stimulation (Morrison et al., 2004b; Smeding et al., 2007; 

Temel et al., 2006) or patient variables, such as degree of dopaminergic denervation (Foster, 

Black, Antenor-Dorsey, Perlmutter, & Hershey, 2007; Hershey et al., 2007) could modulate 

cognitive control as well as the direction and degree of change in associated prefrontal 

cortical blood flow.  For example, without direct visual identification of electrode contacts 

within the brain, uncertainty remains regarding their precise location and the spatial extent of 

the effects of stimulation, both of which may contribute to STN DBS effects (Temel et al., 

2005).  The frequency, voltage, and amplitude of STN stimulation also could influence 

cortical functioning (Strafella et al., 2003; Temel et al., 2005).  Future studies that 

incorporate the exact location of contacts as well as stimulation variables, including the 

degree and strength of current spread, may be useful in understanding the physiological 

characteristics of the anatomical pathways underlying the cognitive effects of stimulation.   
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Table 1 

Cognitive control performance across stimulation conditions (OFF v. ON). 

 Stimulation Condition 

 Bilateral OFF  Bilateral ON 

SDR Task 
   

One Cue Error 18.06 (6.77)  18.02 (5.02) 

Two Cue Error 23.05 (5.85)  23.28 (5.19) 

GNG Task    

Medium Frequency RT 525.31 (100.37)  498.43 (67.86) 

High Frequency RT 486.09 (98.31)  439.50 (80.87) 

Medium Frequency Pr 0.84 (0.17)  0.84 (0.17) 

High Frequency Pr 0.75 (0.18)  0.71 (0.20) 

Note.  Values shown as mean (SD). SDR error in mm. Pr = discriminability index.   

RT = response time in msec. 
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Figure 1.  Locations of the (A) anterior cingulate cortex (ACC), (B) right inferior frontal 

cortex (rIFC), and (C) dorsolateral prefrontal cortex (DLPFC) regions of interest. A 10.4mm 

sphere was placed on these locations.  



Hershey 36 

Figure 2. Scatterplots showing the significant correlations between (A) change in DLPFC 

blood flow and change in WM, as indicated by SDR errors (larger numbers reflect decreased 

performance with stimulation), and (B) change in ACC blood flow and change in RI, as 

indicated by GNG discriminability (larger numbers reflect improved performance with 

stimulation).  Both correlations indicate that stimulation-induced decreased cognitive control 

performance is associated with stimulation-induced increased blood flow responses. 
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