73 research outputs found

    Smart Speech Composition for Augmentative and Alternative Communication Using a Machine-Learned Model

    Get PDF
    This publication describes an augmentative and alternative communication (AAC) user equipment (UE) that enables a user to select autocompleted sentences displayed in a user interface (UI) of the AAC UE. The AAC UE scans ambient sounds to identify speech that is being spoken in the vicinity of the user. After the AAC UE scans for speech, the AAC UE converts the audible speech into digitized speech using a speech-recognition model. Also, the AAC UE identifies the audience in the conversation with the user by employing user input (e.g., the user selects the audience), voice recognition, facial recognition, radar signature, biometric sensors (e.g., a person may scan their thumb on the AAC UE before communicating with the user), media address control identification (MAC ID) (e.g., the AAC UE can scan MAC IDs of smartphones used by the audience), radio-frequency identification (RFID) (e.g., an employee’s badge), or other sensors (e.g., in car seats). The AAC UE feeds the digitized speech and the identity of the audience into a machine-learned (ML) model, which analyzes the speech and makes suggestions on sentences that the user may want to use. The UI of the AAC UE displays the suggested sentences and waits for user input. The user reads the suggested sentences and selects the sentences that are applicable to a conversation. In case the user does not like the suggested sentences, they can use a keyboard to compose a new sentence or to modify a suggested sentence. The digitized composed speech, aided by user input, is then converted to synthesized speech. In addition, the digitized composed speech becomes an input to the ML model. Reiteratively, the ML model is updated to make a better prediction in future conversations, thus speeding up the communication process

    Thermal induced deflection in atomic force microscopy cantilevers: analysis and solution

    Get PDF
    Atomic force microscopy (AFM) cantilevers are commonly made from two material layers: a reflective coating and structural substrate. Although effective, this can result in thermally induced cantilever deflection due to ambient and local temperature changes. While this has been previously documented, key aspects of this common phenomenon have been overlooked. This work explores the impact of thermally induced cantilever deflection when in- and out-of-contact, including the topographic scan artefacts produced. Scanning thermal microscopy probes were employed to provide direct cantilever temperature measurement from Peltier and microheater sources, whilst permitting cantilever deflection to be simultaneously monitored. Optical lever-based measurements of thermal deflection in the AFM were found to vary by up to 250% depending on the reflected laser spot location on the cantilever. This highlights AFM's inherent inability to correctly measure and account for thermal induced cantilever deflection in its feedback system. This is particularly problematic when scanning a tip in-contact with the surface, when probe behaviour is closer mechanically to that of a bridge than a cantilever regarding thermal bending. In this case, measurements of cantilever deflection and inferred surface topography contained significant artefacts and varied from negative to positive for different optical lever laser locations on the cantilevers. These topographic errors were measured to be up to 600 nm for a small temperature change of 2 K. However, all cantilevers measured showed a point of consistent, complete thermal deflection insensitivity 55% to 60% along their lengths. Positioning the reflected laser at this location, AFM scans exhibited improvements of up-to 97% in thermal topographic artefacts relative to other laser positions

    Phosphorus in the landscape: diffuse sources to surface waters. Land and Water Resources Research and Development Corporation. Occasional Paper 16/98

    Get PDF
    The National Eutrophication Management Program (NEMP) and Environment Australia convened a workshop to develop a coherent overview of the sources and transport of diffuse phosphorus in Australian catchments based on the latest knowledge. The Land and Water Resources Research and Development Corporation (LWRRDC) and the Murray–Darling Basin Commission (MDBC) jointly fund NEMP. A select group of scientists attended the workshop and developed a coherent statement about phosphorus sources and transport in Australian catchments. The group did not extend this statement to include recommended management practices. This paper reports the findings from the workshop. State governments have developed algal and nutrient management strategies in response to concerns about the frequency and severity of algal blooms, including cyanobacterial blooms, in Australian rivers and estuaries. There is an emphasis on phosphorus management, particularly in rural environments, now that nutrients are recognised as fundamental drivers of algal growth. Best management practices (BMPs) were developed for these strategies on the basis of the limited scientific evidence that was available at the time. The absence of a significant body of Australian information meant that there was a reliance on overseas research findings to develop such BMPs. A number of research projects have been completed in recent years on the sources and transport of nutrients in Australian catchments that challenge the Northern Hemisphere model of nutrient behaviour and will have implications for future development of BMPs. Principal conclusions 1. The studies presented in the workshop demonstrate that control of phosphorus entering surface waters must start with land management that minimises accelerated erosion and overland flow of water potentially rich in phosphorus. Heavily grazed lands, irrigation areas and intensive animal and horticultural industries are at risk, especially at the onset of rainy seasons and during periods of high rain intensity. 2. The transport of phosphorus from diffuse sources in landscapes can occur in both dissolved and particulate form. This can be due to different mobilisation and delivery mechanisms operating in different environments. Phosphorus mobilisation and delivery 1. Diffuse sources of phosphorus are the dominant component in most Australian catchments. Episodic rainfall is responsible for the bulk of phosphorus loss from the landscape. The mechanisms vary with each catchment. 2. Particulate phosphorus is carried by overland flow, resulting from run-off and erosion. In high to medium rainfall environments most is carried as filterable reactive phosphorus of less than 0.45 microns. Although most of the coarser materials from high parts of the landscape are deposited before they reach a watercourse, the particles ultimately carried into drainage lines are phosphorus-enriched by processes of sorting and filtration. 3. In river systems studied in the Murray–Darling Basin river sediments that originate from gully erosion and stream-bank collapse of readily dispersible soils carry most of the diffuse-source phosphorus. It is very likely that most of the phosphorus on these sediments is ‘native’ phosphorus coming from subsoils. 2 Phosphorus in the landscape: diffuse sources to surface waters Although the major episodes of gully formation occurred several decades ago, inputs of sediments and phosphorus from these sources continue at a high rate. Reduced input rates can best be achieved by targeting the gullies themselves and stabilising them by conservation works—particularly in small headwater catchments. 4. In larger dry-land catchments, fertiliser phosphorus is generally not an important component of phosphorus loss/export, although it may be locally significant. 5. Local soil, vegetation, terrain and climate conditions dictate whether surface erosion is the dominant source of phosphorus into a watercourse. To describe phosphorus exports from a specific landscape by surface erosion requires local studies. However, guidelines can be developed for management purposes to identify and minimise sources of phosphorus carried by overland flow. 6. Potential sources of diffuse phosphorus run-off occur wherever fertilisers are applied to soils that are already wet at the surface, or that may become wet by seasonally emerging groundwater. The magnitude of the loss will be greater if the application occurs on bare soils, or if it is next to a waterbody. 7. Dissolved phosphorus (from fertilisers and other sources) is readily mobilised and transported directly where the soil has both little ability to bind the phosphorus and a high leaching rate, as occurs in sandy regions of high rainfall around the continent. Phosphorus-laden water then travels via overland or shallow sub-surface flow to surface waterbodies quite quickly, unless other processes impede the movement. If the dissolved phosphorus moves via deep groundwater the time scales for its reappearance in surface water are generally large. 8. Dissolved phosphorus may also enter tributary waterbodies in headwater catchments via shortcircuit pathways, such as macropores, but this is only likely to be important over distances of hundreds of metres. However, these sub-surface pathways may reduce the effectiveness of local management practices that do not take them into account. 9. Large amounts of dissolved phosphorus are also being produced from irrigated dairy pastures (and possibly from other irrigation enterprises also). There is little or no sub-surface movement because soils are generally high in clay and flat. Phosphorus-laden water is pumped or drained across the land surface to channels. The time scale of dissolved phosphorus movement is comparable with the time with which the water itself moves. Once within drainage channels and streambeds the dissolved phosphorus fraction may be partially re-adsorbed onto particulates. 10. Large quantities of dissolved phosphorus are found in surface waters next to areas where animal excreta or over-fertilised market gardens give rise to phosphorus in surface wastewater that flows directly into waterways. These situations are most likely to arise in catchments that contain mixtures of horticultural, dairying, hobby-farming and similar land uses. Where farm dams are abundant a significant fraction of this phosphorus will not enter streams but will be retarded or retained in the landscape

    Pennsylvania Folklife Vol. 22, No. 4

    Get PDF
    • Let\u27s Talk About Slate • Ephrata Cloister Wills • A Blacksmith\u27s Summerkich • Pennsylvania German Astronomy and Astrology VI: Astrological Philosophy • Stoneware from New Geneva and Greensboro, Pennsylvania • American Emigration Materials from Pfeddersheim • Folk Medicine - Home Remedies: Folk-Cultural Questionnaire No. 29https://digitalcommons.ursinus.edu/pafolklifemag/1053/thumbnail.jp

    FAK inhibition alone or in combination with adjuvant therapies reduces cancer stem cell activity

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-06-29, accepted 2021-03-15, registration 2021-04-23, pub-electronic 2021-05-28, online 2021-05-28, collection 2021-12Publication status: PublishedFunder: Royal College of Surgeons of England (RCS); doi: https://doi.org/10.13039/501100000297Abstract: Cancer stem-like cells (CSC) contribute to therapy resistance and recurrence. Focal adhesion kinase (FAK) has a role in CSC regulation. We determined the effect of FAK inhibition on breast CSC activity alone and in combination with adjuvant therapies. FAK inhibition reduced CSC activity and self-renewal across all molecular subtypes in primary human breast cancer samples. Combined FAK and paclitaxel reduced self-renewal in triple negative cell lines. An invasive breast cancer cohort confirmed high FAK expression correlated with increased risk of recurrence and reduced survival. Co-expression of FAK and CSC markers was associated with the poorest prognosis, identifying a high-risk patient population. Combined FAK and paclitaxel treatment reduced tumour size, Ki67, ex-vivo mammospheres and ALDH+ expression in two triple negative patient derived Xenograft (PDX) models. Combined treatment reduced tumour initiation in a limiting dilution re-implantation PDX model. Combined FAK inhibition with adjuvant therapy has the potential to improve breast cancer survival

    Identifying toxic impacts of metals potentially released during deep-sea mining - a synthesis of the challenges to quantifying risk

    Get PDF
    In January 2017, the International Seabed Authority released a discussion paper on the development of Environmental Regulations for deep-sea mining (DSM) within the Area Beyond National Jurisdiction (the "Area"). With the release of this paper, the prospect for commercial mining in the Area within the next decade has become very real. Moreover, within nations' Exclusive Economic Zones, the exploitation of deep-sea mineral ore resources could take place on very much shorter time scales and, indeed, may have already started. However, potentially toxic metal mixtures may be released at sea during different stages of the mining process and in different physical phases (dissolved or particulate). As toxicants, metals can disrupt organism physiology and performance, and therefore may impact whole populations, leading to ecosystem scale effects. A challenge to the prediction of toxicity is that deep-sea ore deposits include complex mixtures of minerals, including potentially toxic metals such as copper, cadmium, zinc, and lead, as well as rare earth elements. Whereas the individual toxicity of some of these dissolved metals has been established in laboratory studies, the complex and variable mineral composition of seabed resources makes the a priori prediction of the toxic risk of DSM extremely challenging. Furthermore, although extensive data quantify the toxicity of metals in solution in shallow-water organisms, these may not be representative of the toxicity in deep-sea organisms, which may differ biochemically and physiologically and which will experience those toxicants under conditions of low temperature, high hydrostatic pressure, and potentially altered pH. In this synthesis, we present a summation of recent advances in our understanding of the potential toxic impacts of metal exposure to deep-sea meio- to megafauna at low temperature and high pressure, and consider the limitation of deriving lethal limits based on the paradigm of exposure to single metals in solution. We consider the potential for long-term and far-field impacts to key benthic invertebrates, including the very real prospect of sub-lethal impacts and behavioral perturbation of exposed species. In conclusion, we advocate the adoption of an existing practical framework for characterizing bulk resource toxicity in advance of exploitation

    Lucy Mission to the Trojan Asteroids: Science Goals

    Get PDF
    The Lucy Mission is a NASA Discovery-class mission to send a highly capable and robust spacecraft to investigate seven primitive bodies near both the L4 and L5 Lagrange points with Jupiter: the Jupiter Trojan asteroids. These planetesimals from the outer planetary system have been preserved since early in solar system history. The Lucy mission will fly by and extensively study a diverse selection of Trojan asteroids, including all the recognized taxonomic classes, a collisional family member, and a near equal-mass binary. It will visit objects with diameters ranging from roughly 1 km to 100 km. The payload suite consists of a color camera and infrared imaging spectrometer, a high-resolution panchromatic imager, and a thermal infrared spectrometer. Additionally, two spacecraft subsystems will also contribute to the science investigations: the terminal tracking cameras will supplement imaging during closest approach and the telecommunication subsystem will be used to measure the mass of the Trojans. The science goals are derived from the 2013 Planetary Decadal Survey and include determining the surface composition, assessing the geology, determining the bulk properties, and searching for satellites and rings

    2016 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1003/thumbnail.jp

    Assessment of scientific gaps related to the effective environmental management of deep-seabed mining

    Get PDF
    A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist
    • …
    corecore