223 research outputs found

    Understanding the lived experiences of sexual assault survivors: a narrative study of posttraumatic growth

    Get PDF
    Most people experience some type of traumatic event in their lives, such as physical or sexual assault, serious medical illnesses, accidents that cause injury, the death of a loved one, and military combat exposure. There is variability in how people respond to trauma. Survivors could benefit from learning more about trauma responses, including the process of healing. In recent times, society has been challenged to examine their perceptions of sexual assault and those who survive these experiences. Much research has been done on the negative impact oftrauma. Further research is necessary to gain a deeper understanding of both the positive and negative responses to trauma, particularly among sexual assault survivors as this population is not well-represented in the current research. Posttraumatic growth (PTG) has been defined by Calhoun and Tedeschi (2006) as a positive transformative experience among people who have been exposed to trauma that may coexist with symptoms of psychological distress. The purpose of this narrative study was to better understand the lived experiences of PTG in adult sexual assault survivors. The current qualitative narrative study used a social constructivist interpretive paradigm to explore PTG among eight sexual assault survivors. Semi-structured interviews were conducted, transcribed, coded, and interpreted. Restorying was used to introduce the participants to the readers and to organize their narratives. Findings indicated that the participants had similar experiences of negative and positive life vi changes and reported experiences of PTG domains, appreciation for life, relating to others, new possibilities in life, personal strength, and spiritual change

    Identification of the N-terminal Peptide Binding Site of Glucose-regulated Protein 94

    Get PDF
    Because the stress protein GRP94 can augment presentation of peptides to T cells, it is important to define how it, as well as all other HSP90 family members, binds peptides. Having previously shown that the N-terminal half of GRP94 can account for the peptide binding activity of the full-length protein, we now locate this binding site by testing predictions of a molecular docking model. The best predicted site was on the opposite face of the β sheet from the pan-HSP90 radicicol-binding pocket, in close proximity to a deep hydrophobic pocket. The peptide and radicicol-binding sites are distinct, as shown by the ability of a radicicol-refractive mutant to bind peptide. When the fluorophore acrylodan is attached to Cys(117)within the hydrophobic pocket, its fluorescence is reduced upon peptide binding, consistent with proximity of the two ligands. Substitution of His(125), which contacts the bound peptide, compromises peptide-binding activity. We conclude that peptide binds to the concave face of the β sheet of the N-terminal domain, where binding is regulated during the action cycle of the chaperone

    The GenusAlistipes:Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health

    Get PDF
    Alistipesis a relatively new genus of bacteria isolated primarily from medical clinical samples, although at a low rate compared to other genus members of theBacteroidetesphylum, which are highly relevant in dysbiosis and disease. According to the taxonomy database at The National Center for Biotechnology Information, the genus consists of 13 species:Alistipes finegoldii, Alistipes putredinis, Alistipes onderdonkii, Alistipes shahii, Alistipes indistinctus, Alistipes senegalensis, Alistipes timonensis, Alistipes obesi, Alistipes ihumii, Alistipes inops, Alistipes megaguti, Alistipes provencensis, andAlistipes massiliensis. Alistipes communisandA. dispar, and the subspeciesA. Onderdonkiisubspecies vulgaris (vs.onderdonkiisubsp.) are the newest strains featured outside that list. Although typically isolated from the human gut microbiome various species of this genus have been isolated from patients suffering from appendicitis, and abdominal and rectal abscess. It is possible that asAlistipesspp. emerge, their identification in clinical samples may be underrepresented as novel MS-TOF methods may not be fully capable to discriminate distinct species as separate since it will require the upgrading of MS-TOF identification databases. In terms of pathogenicity, there is contrasting evidence indicating thatAlistipesmay have protective effects against some diseases, including liver fibrosis, colitis, cancer immunotherapy, and cardiovascular disease. In contrast, other studies indicateAlistipesis pathogenic in colorectal cancer and is associated with mental signs of depression. Gut dysbiosis seems to play a role in determining the compositional abundance ofAlistipesin the feces (e.g., in non-alcoholic steatohepatitis, hepatic encephalopathy, and liver fibrosis). SinceAlistipesis a relatively recent sub-branch genus of theBacteroidetesphylum, and sinceBacteroidetesare commonly associated with chronic intestinal inflammation, this narrative review illustrates emerging immunological and mechanistic implications by whichAlistipesspp. correlate with human health

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    TAPBPR: a new player in the MHC class I presentation pathway.

    Get PDF
    In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.C.H was supported by a Wellcome Trust PhD Studentship (Grant 089563) and L.H.B was funded by a Wellcome Trust Career Development Fellowship (Grant 085038).This is the author accepted manuscript. The final published version is available via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/tan.12538/abstract;jsessionid=3D6AF64F5BD8C64E84634A4303842BE2.f04t01

    Oligomerization properties of ERp29, an endoplasmic reticulum stress protein

    Get PDF
    Funding Information: This work was supported by the Swedish Medical Research Council. We thank Prof. H.F. Gilbert for helpful discussions and critical reading of the manuscript. Copyright: Copyright 2007 Elsevier B.V., All rights reserved. Correction(s) for this article: Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Letters,Vol.433, N.3, p.335-335. - First Published online: June 28, 1999.ERp29, a novel and ubiquitously expressed endoplasmic reticulum (ER) stress-inducible protein, was recently isolated and cDNA cloned in our laboratory. Using size exclusion chromatography and chemical cross-linking we have assessed the oligomerization properties of ERp29. Purified ERp29 in solution as well as in rat hepatoma cells self-associates predominantly into homodimers. Labeling of the cells with [35S]methionine with subsequent cross-linking and immunprecipitation showed that ERp29 interacts with a number of ER proteins, one of which was previously identified as BiP/GRP78. Secondary structure prediction and fold recognition methods indicate that the native conformation of ERp29 resembles the thioredoxin fold, a structural motif characteristic of a number of enzymes with the redox function, including protein disulfide isomerase (with which ERp29 shares limited sequence similarity). Dimerization of the protein is suggested to be advantageous for the protein binding potential of ERp29.publishersversionPeer reviewe
    corecore