140 research outputs found

    THE EFFECT OF POULTRY LITTER APPLICATION ON AGRICULTURAL PRODUCTION: A META-ANALYSIS OF CROP YIELD, NUTRIENT UPTAKE AND SOIL FERTILITY

    Get PDF
    Meta-analysis is a statistical technique used to analyze large datasets containing results from numerous individual studies. It appears to be a promising approach in agricultural sciences. This study aimed to conduct a meta-analytic assessment to elucidate the influence of poultry litter (PL) application on crop yield, plant nutrient uptake, and soil fertility as compared to inorganic fertilizer (IF). A meta-analysis based on 116 studies (111 refereed articles and five unpublished data sets) with 2293 observations compared agronomic responses to PL and IF application. The natural log of the response ratio was used as effect size (ES) to express differences in the effects of PL and IF. The variances of estimated effects were estimated using within-study and between-study variation and were used to calculate a weighting factor. A random-effects model was used to test if the ES was significantly different from zero (α= 0.05). Crop yield was slightly less when evaluating PL additions during the 1st or 2nd year of application, while significant increases were observed with long-term PL application. PL influenced plant nutrient uptake with a slightly negative effect being observed for N uptake, but significant positive effects for P and K uptake. Positive effects on soil fertility were also observed with PL significantly increasing CEC, pH and concentration of soil C, P, K, Ca, and Mg compared to IF. Overall, PL can be used as an alternative nutrient source to enhance crop yield, increase plant nutrient uptake, and improve soil fertility

    Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Get PDF
    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults) soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material) from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO3), gypsum (CaSO4), aluminum sulfate (AlSO4), and ferrous sulfate (FeSO4) were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation) indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could decrease N mineralization

    Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Get PDF
    Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults) soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material) from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO 3 ), gypsum (CaSO 4 ), aluminum sulfate (AlSO 4 ), and ferrous sulfate (FeSO 4 ) were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO 4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation) indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could decrease N mineralization

    Tillage and Fertilizer Management Effects on Soil-Atmospheric Exchanges of Methane and Nitrous Oxide in a Corn Production System

    Get PDF
    Land application of poultry litter (PL) presents an opportunity to improve soil productivity and disposal of poultry waste. We investigated methane (CH4) and nitrous oxide (N2O) emissions from agricultural soil receiving PL and ammonium nitrate (AN) fertilizers using surface (SA), soil incorporation (SI), and subsurface band (BA) application methods in conventional (CT) and no-tillage (NT) systems on a Decatur silt loam soil in North Alabama. Plots under CT and NT were sinks of CH4 in spring, summer, and fall. In winter, the plots had net emissions of 3.32 and 4.24 g CH4 ha-1 day-1 in CT and NT systems, respectively. Plots which received AN were net emitters of CH4 and N2O, whereas plots which received PL were net sinks of CH4. Plots which received PL using SA or SI methods were net emitters of N2O, whereas under PL using BA application, the plots were net sinks of N2O. Our study indicates that using subsurface band application of PL was the most promising environmentally sustainable poultry waste application method for reducing CH4 and N2O emissions from agricultural soil in NT and CT corn production systems on the Decatur soil in north Alabama

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    A review of the impacts of degradation threats on soil properties in the UK

    Get PDF
    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the ‘spheres’, significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (ξAWHC), while some studies show the ability to substantially increase ξAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (ξFC) and permanent wilting point (ξPWP). New pedotransfer functions had predictions of ξAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on ξAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in ξAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in ξAWHC is about double previous estimates. Calcareous soils had an increase in ξAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience
    • 

    corecore