21 research outputs found

    Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Get PDF
    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to match the accepted versio

    Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Full text link
    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.Comment: 18 pages, 16 figures, Minor revisions to match version accepted for publication in Physical Review

    Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    Full text link
    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.Comment: seven pages, 6 fiure

    Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    Get PDF
    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.Comment: seven pages, 6 fiure

    Measurement of Inclusive Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    Get PDF
    The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 \pm 0.5(stat.) \pm 0.5 (sys.)) x 10^(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the neutral pion momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 \pm 0.4) x 10^(-2).Comment: 17 pages, 23 figures, accepted by Phys. Rev.

    Measurement of K(+) production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    Get PDF
    The SciBooNE Collaboration reports K[superscript +] production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C[subscript 8]H[subscript 8]) target in the SciBooNE detector. The K[superscript +] mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d[superscript 2]σ/dpdΩ=(5.34±0.76)  mb/(GeV/c×sr) for p+Be→K[superscript +]+X at mean K[superscript +] energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K[superscript +] sample. Compared to Monte Carlo predictions using previous higher energy K[superscript +] production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K[superscript +] measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K[superscript +] production cross section from 40% to 14%.Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of ScienceJapan Society for the Promotion of Science (Grant-in-Aid for Scientific Research A 19204026)Japan Society for the Promotion of Science (Young Scientists S 20674004)Japan Society for the Promotion of Science (Young Scientists B 18740145

    Dual baseline search for muon antineutrino disappearance at 0.1 eV² < <{\Delta}m² < 100  eV²

    No full text
    The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of ν̅[subscript μ] at Fermilab’s Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the ν[subscript μ] background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on ν̅[subscript μ] disappearance that dramatically improves upon prior limits in the Δm[superscript 2]=0.1–100  eV[superscript 2] region
    corecore