3,394 research outputs found

    Investor Sentiment and Noise Traders: Discount to Net Asset Value in Listed Property Companies in the U.K.

    Get PDF
    There are parallels between the operation of closed-end funds and in the United Kingdom property companies. In both types of corporations, the market capitalization is commonly less than the net asset value (NAV) of the assets owned by the firms. This article investigates the relationship between the NAV of U.K. property companies and their market capitalizations. We first examine the hypothesis that discounts are the result of agency costs, contingent capital gains tax liability and a number of other firm specific factors. We then examine the hypothesis that discounts result from the interaction of noise traders and rational investors. The evidence suggests that both hypotheses have utility in explaining property company discounts.

    STRATEGIC AGRIBUSINESS OPERATION REALIGNMENT IN THE TEXAS PRISON SYSTEM

    Get PDF
    Mathematical programming-based systems analysis is used to examine the consequences of alternative operation configuration for the agricultural operations within the Texas Department of Criminal Justice. Continuation versus elimination of the total operation as well as individual operating departments are considered. Methodology includes a firm systems operation model combined with capital budgeting and an integer programming based investment model. Results indicate the resources realize a positive return as a whole, but some enterprises are not using resources profitably. The integer investment model is found to be superior for investigating whether to continue multiple interrelated enterprises.agribusiness, enterprise selection, mathematical programming, optimal enterprise organization, Agribusiness,

    Repurposing blood glucose test strips for identification of the antimicrobial colistin

    Get PDF
    The presence and fate of antimicrobial residues in the environment is a subject of growing concern. Previous researchers have demonstrated the persistence of residues in soil and water. Additionally, antimicrobial resistance is a growing concern, particularly to public health, animal health and economic development. In this study, a low cost, commercial blood glucose meter was explored as the basis for detecting antimicrobial residues in conjunction with a microorganism sensitive to this residue. A microbial bioassay was developed based on the metabolic response of Geobacillus stearothermophilus, a sensitive bacteria used in the determination of antimicrobial residues in food products, by measuring changes in glucose as a result of metabolic activity. After optimizing experimental conditions, this sensing strategy was tested using bacterial cultures in the presence of colistin, a last-resort antibiotic used for human and animal health. Growth of G. stearothermophilus was measurable as a change in glucose concentration after 2–4 h incubation at 60 °C, when LB media was supplemented with 100 mg/dL of glucose. The lowest measured colistin concentration that resulted in inhibition of growth was 1 mg/L colistin and an increase in lag phase resulted at 100 µg/L colistin. To increase the sensitivity of the assay, we then added a sub-inhibitory concentration of chloramphenicol to the media and found that growth inhibition could be achieve at a lower colistin concentration of 8 µg /L. These results provide a promising basis for a future low-cost sensor to identify antimicrobial residues from environmental samples in the field

    Observations of Arp 220 using Herschel-SPIRE: An Unprecedented View of the Molecular Gas in an Extreme Star Formation Environment

    Get PDF
    We present Herschel SPIRE-FTS observations of Arp~220, a nearby ULIRG. The FTS continuously covers 190 -- 670 microns, providing a good measurement of the continuum and detection of several molecular and atomic species. We detect luminous CO (J = 4-3 to 13-12) and water ladders with comparable total luminosity; very high-J HCN absorption; OH+, H2O+, and HF in absorption; and CI and NII. Modeling of the continuum yields warm dust, with T = 66 K, and an unusually large optical depth of ~5 at 100 microns. Non-LTE modeling of the CO shows two temperature components: cold molecular gas at T ~ 50 K and warm molecular gas at T ~1350 K. The mass of the warm gas is 10% of the cold gas, but dominates the luminosity of the CO ladder. The temperature of the warm gas is in excellent agreement with H2 rotational lines. At 1350 K, H2 dominates the cooling (~20 L_sun/M_sun) in the ISM compared to CO (~0.4 L_sun/M_sun). We found that only a non-ionizing source such as the mechanical energy from supernovae and stellar winds can excite the warm gas and satisfy the energy budget of ~20 L_sun/M_sun. We detect a massive molecular outflow in Arp 220 from the analysis of strong P-Cygni line profiles observed in OH+, H2O+, and H2O. The outflow has a mass > 10^{7} M_sun and is bound to the nuclei with velocity < 250 km/s. The large column densities observed for these molecular ions strongly favor the existence of an X-ray luminous AGN (10^{44} ergs/s) in Arp 220.Comment: Accepted in ApJ on September 1, 201

    Gene flow in environmental Legionella pneumophila leads to genetic and pathogenic heterogeneity within a Legionnaires' disease outbreak

    Get PDF
    BACKGROUND: Legionnaires’ disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires’ disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates. RESULTS: Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila. CONCLUSIONS: Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires’ disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0504-1) contains supplementary material, which is available to authorized users

    NACHOS, a CubeSat-Based High-Resolution UV-Visible Hyperspectral Imager for Remote Sensing of Trace Gases: System Overview, Science Objectives, and Preliminary Results

    Get PDF
    The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (1.3 nm optical, 0.57 nm sampling) hyperspectral imager covering the 300-500 nm spectral region with 350 spectral bands. The combined 1.5U instrument payload and 1.5U spacecraft bus comprise a 3U CubeSat. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field coverage at ~20 km spatial resolution, NACHOS offers complementary targeted measurements at far higher spatial resolution of ~0.4 km/pixel from 500 km altitude over its 15 ̊ across-track field of view. NACHOS incorporates highly streamlined onboard gas-retrieval algorithms, alleviating the need to routinely downlink massive hyperspectral data cubes. This paper discusses the instrument design, requirements leading to it, preliminary results, and science goals, including monitoring NO2 as a proxy for anthropogenic greenhouse gases, low-level degassing of SO2 and halogen oxides at pre-eruptive volcanoes, and formaldehyde from wildfires. Aiming for an eventual many-satellite constellation providing both high spatial resolution and frequent target revisits, the current NACHOS project is launching two CubeSats, the first already launched to the International Space Station aboard the NG-17 Cygnus vehicle on February 19, 2022 and awaiting deployment to its final orbit in June, and the second launching June 29, 2022
    corecore